【題目】如圖,點(diǎn)P,Q是直線y=x+2上的兩點(diǎn),點(diǎn)P在點(diǎn)Q的左側(cè),且滿足OP=OQ,OPOQ,則點(diǎn)Q的坐標(biāo)是______.

【答案】.

【解析】

分別過點(diǎn)P、Qx軸的垂線于點(diǎn)M、N,證明PMO≌△ONQAAS),則PM=ON,OM=QN,設(shè)點(diǎn)Pm,m+2),則點(diǎn)Qm+2,-m),將點(diǎn)Q代入y=x+2求出m即可得解.

解:分別過點(diǎn)P、Qx軸的垂線于點(diǎn)M、N,

OPOQ,

∴∠POM+QON=90°,而∠QON+OQN=90°
∴∠OQN=MOP,

OP=OQ,∠PMO=ONQ=90°,
∴△PMO≌△ONQAAS),
PM=ON,OM=QN
設(shè)點(diǎn)Pm,m+2),則點(diǎn)Qm+2,-m),
將點(diǎn)Q的坐標(biāo)代入y=x+2得:-m=m+2+2,
解得:m=

m+2=,
故點(diǎn)Q,),
故答案為:(,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點(diǎn),連接AE、BE,延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F

1)求證:DAE≌△CFE

2)若ABBC+AD,求證:BEAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1和圖2,半圓O的直徑AB=2,點(diǎn)P不與點(diǎn)A,B重合為半圓上一點(diǎn),將圖形延BP折疊,分別得到點(diǎn)A,O的對(duì)稱點(diǎn)A′,O′,設(shè)ABP=α

1當(dāng)α=15°時(shí),過點(diǎn)A′作A′CAB,如圖1,判斷A′C與半圓O的位置關(guān)系,并說明理由

2如圖2,當(dāng)α= °時(shí),BA′與半圓O相切當(dāng)α= °時(shí),點(diǎn)O′落在

3當(dāng)線段BO′與半圓O只有一個(gè)公共點(diǎn)B時(shí),求α的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,∠C=90°,AC=3cm,BC=4cm,點(diǎn)P是邊BC上由BC運(yùn)動(dòng)(不與點(diǎn)B、C重合)的一動(dòng)點(diǎn),P點(diǎn)的速度是1cm/s,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,過P點(diǎn)作AC的平行線交AB與點(diǎn)N,連接AP,

(1)請(qǐng)用含有t的代數(shù)式表示線段AN和線段PN的長(zhǎng),

(2)當(dāng)t為何值時(shí),△APN的面積等于△ACP面積的三分之一?

(3)在點(diǎn)P的運(yùn)動(dòng)過程中,是否存在某一時(shí)刻的t的值,使得△APN的面積有最大值,若存在請(qǐng)求出t的值并計(jì)算最大面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名運(yùn)動(dòng)員進(jìn)行長(zhǎng)跑訓(xùn)練,兩人距終點(diǎn)的路程y(米)與跑步時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答問題:

1)他們?cè)谶M(jìn)行 米的長(zhǎng)跑訓(xùn)練,在0x15的時(shí)段內(nèi),速度較快的人是 ;

2)求甲距終點(diǎn)的路程y(米)和跑步時(shí)間x(分)之間的函數(shù)關(guān)系式;

3)當(dāng)x=15時(shí),兩人相距多少米?在15x20的時(shí)段內(nèi),求兩人速度之差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△ABC中,AB=AC=10BC=16,點(diǎn)F是邊BC上不與點(diǎn)BC重合的一個(gè)動(dòng)點(diǎn),直線DE垂直平分BF,垂足為D.當(dāng)△ACF是直角三角形時(shí),線段BD的長(zhǎng)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知射線的角平分線,,點(diǎn)是射線上的點(diǎn),連接.

(1)如圖1,當(dāng)點(diǎn)在射線上時(shí),連接,.,則的形狀是_____.

(2)如圖2,當(dāng)點(diǎn)在射線的反向延長(zhǎng)線上時(shí),連接,.,則(1)中的結(jié)論是否成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在邊長(zhǎng)為4cm的正方形ABCD中,點(diǎn)P以每秒2cm的速度從點(diǎn)A出發(fā),沿AB→BC的路徑運(yùn)動(dòng),到點(diǎn)C停止.過點(diǎn)PPQBD,PQ與邊AD(或邊CD)交于點(diǎn)Q,PQ的長(zhǎng)度y(cm)與點(diǎn)P的運(yùn)動(dòng)時(shí)間x(秒)的函數(shù)圖象如圖②所示.當(dāng)點(diǎn)P運(yùn)動(dòng)2.5秒時(shí),PQ的長(zhǎng)度是________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn),與雙曲線交于第一象限的點(diǎn)和第三象限的點(diǎn),點(diǎn)的縱坐標(biāo)為

的值;

求不等式:的解集

軸上的點(diǎn)作平行于軸的直線,分別與直線和雙曲線交于點(diǎn),求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案