如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當(dāng)其中一點到達端點時,另一點也隨之停止運動,設(shè)運動時間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= ,PD= .
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;
(3)如圖2,在整個運動過程中,求出線段PQ中點M所經(jīng)過的路徑長.
(1)8-2t,.(2)不存在;當(dāng)點Q的速度為每秒個單位長度時,經(jīng)過秒,四邊形PDBQ是菱形.(3)線段PQ中點M所經(jīng)過的路徑長為2單位長度.
【解析】
試題分析:(1)根據(jù)題意得:CQ=2t,PA=t,由Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,即可得tanA=,則可求得QB與PD的值;
(2)易得△APD∽△ACB,即可求得AD與BD的長,由BQ∥DP,可得當(dāng)BQ=DP時,四邊形PDBQ是平行四邊形,即可求得此時DP與BD的長,由DP≠BD,可判定PDBQ不能為菱形;然后設(shè)點Q的速度為每秒v個單位長度,由要使四邊形PDBQ為菱形,則PD=BD=BQ,列方程即可求得答案;
(3)設(shè)E是AC的中點,連接ME.當(dāng)t=4時,點Q與點B重合,運動停止.設(shè)此時PQ的中點為F,連接EF,由△PMN∽△PQC.利用相似三角形的對應(yīng)邊成比例,即可求得答案.
試題解析:(1)根據(jù)題意得:CQ=2t,PA=t,
∴QB=8-2t,
∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,
∴∠APD=90°,
∴tanA=,
∴PD=.
(2)不存在
在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10
∵PD∥BC,
∴△APD∽△ACB,
∴,即,
∴AD=,
∴BD=AB-AD=10-,
∵BQ∥DP,
∴當(dāng)BQ=DP時,四邊形PDBQ是平行四邊形,
即8-2t=,解得:t=.
當(dāng)t=時,PD=,BD=10-,
∴DP≠BD,
∴PDBQ不能為菱形.
設(shè)點Q的速度為每秒v個單位長度,
則BQ=8-vt,PD=,BD=10-,
要使四邊形PDBQ為菱形,則PD=BD=BQ,
當(dāng)PD=BD時,即=10-,解得:t=
當(dāng)PD=BQ,t=時,即,解得:v=
當(dāng)點Q的速度為每秒個單位長度時,經(jīng)過秒,四邊形PDBQ是菱形.
(3)如圖2,以C為原點,以AC所在的直線為x軸,建立平面直角坐標(biāo)系.
依題意,可知0≤t≤4,當(dāng)t=0時,點M1的坐標(biāo)為(3,0),當(dāng)t=4時點M2的坐標(biāo)為(1,4).
設(shè)直線M1M2的解析式為y=kx+b,
∴,
解得
,
∴直線M1M2的解析式為y=-2x+6.
∵點Q(0,2t),P(6-t,0)
∴在運動過程中,線段PQ中點M3的坐標(biāo)(,t).
把x=代入y=-2x+6得y=-2×+6=t,
∴點M3在直線M1M2上.
過點M2作M2N⊥x軸于點N,則M2N=4,M1N=2.
∴M1M2=2
∴線段PQ中點M所經(jīng)過的路徑長為2單位長度.
考點:1.相似三角形的判定與性質(zhì);2.一次函數(shù)綜合題;3.勾股定理;3.菱形的判定與性質(zhì).
科目:初中數(shù)學(xué) 來源:[同步]2015年課時同步練習(xí)(人教版)八年級數(shù)學(xué)下冊18.1(解析版) 題型:解答題
(2014廣西桂林)在□ABCD中,對角線AC、BD交于點O,過點O作直線EF分別交線段AD、BC于點E、F.
(1)根據(jù)題意,畫出圖形,并標(biāo)上正確的字母;
(2)求證:DE=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:[同步]2015年課時同步練習(xí)(人教版)八年級數(shù)學(xué)下冊18.1(解析版) 題型:選擇題
(2013恩施州)如圖所示,在平行四邊形紙片上作隨機扎針實驗,針頭扎在陰影區(qū)域內(nèi)的概率為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:[同步]2015年課時同步練習(xí)(人教版)八年級數(shù)學(xué)下冊18.1(解析版) 題型:解答題
(2013廣安)如圖,在平行四邊形ABCD中,AE∥CF,求證:△ABE≌△CDF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:[同步]2015年課時同步練習(xí)(人教版)八年級數(shù)學(xué)下冊18.1(解析版) 題型:選擇題
(2013樂山)如圖,點E是□ABCD的邊CD的中點,AD、BE的延長線相交于點F,DF=3,DE=2,則□ABCD的周長為( 。
A.5
B.7
C.10
D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省滕州市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知點P(1,-2a)在二次函數(shù)y=ax2+6的圖象上,并且點P關(guān)于x軸的對稱點在反比例函數(shù)的圖象上。
(1)求此二次函數(shù)和反比例函數(shù)的解析式;
(2)點(-1,4)是否同時在(1)中的兩個函數(shù)圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省滕州市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,在⊙O中,∠D=70°,∠ACB=50°,則∠BAC=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省滕州市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,為正方形對角線AC上一點,以為圓心,長為半徑的⊙與相切于點.
(1)求證:與⊙相切;
(2)若⊙的半徑為1,求正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省興化顧莊等三校九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
某居民小區(qū)為了了解本小區(qū)100戶居民家庭平均月使用塑料袋的數(shù)量情況,隨機調(diào)査了10戶居民家庭月使用塑料袋的數(shù)量,結(jié)果如下:(単位:只)
65 70 85 74 86 78 74 92 82 94
根據(jù)統(tǒng)計情況,估計該小區(qū)這100戶家庭平均使用塑料袋 只.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com