如圖,在坐標(biāo)系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),拋物線的圖象過C點(diǎn).
(1)求拋物線的解析式;
(2)平移該拋物線的對(duì)稱軸所在直線l.當(dāng)l移動(dòng)到何處時(shí),恰好將△ABC的面積分為相等的兩部分?
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PACB為平行四邊形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
解:(1)如答圖1所示,過點(diǎn)C作CD⊥x軸于點(diǎn)D,則∠CAD+∠ACD=90°。
∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,
∴∠OAB=∠ACD,∠OBA=∠CAD。
∵在△AOB與△CDA中,,
∴△AOB≌△CDA(ASA)。
∴CD=OA=1,AD=OB=2。
∴OD=OA+AD=3。
∴C(3,1)。
∵點(diǎn)C(3,1)在拋物線上,
∴,解得:。
∴拋物線的解析式為:。
(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=。
∴S△ABC=AB2=。
設(shè)直線BC的解析式為y=kx+b,∵B(0,2),C(3,1),
∴,解得。
∴直線BC的解析式為。
同理求得直線AC的解析式為:。
如答圖1所示,設(shè)直線l與BC、AC分別交于點(diǎn)E、F,
則。
在△CEF中,CE邊上的高h(yuǎn)=OD﹣x=3﹣x.
由題意得:S△CEF=S△ABC,即: EF•h=S△ABC。
∴,整理得:(3﹣x)2=3。
解得x=3﹣或x=3+(不合題意,舍去)。
∴當(dāng)直線l解析式為x=3﹣時(shí),恰好將△ABC的面積分為相等的兩部分。
(3)存在。如答圖2所示,
過點(diǎn)C作CG⊥y軸于點(diǎn)G,則CG=OD=3,OG=1,BG=OB﹣OG=1。
過點(diǎn)A作AP∥BC,且AP=BC,連接BP,則四邊形PACB為平行四邊形。
過點(diǎn)P作PH⊥x軸于點(diǎn)H,
則易證△PAH≌△BCG。
∴PH=BG=1,AH=CG=3,∴OH=AH﹣OA=2。
∴P(﹣2,1)。
∵拋物線解析式為:,當(dāng)x=﹣2時(shí),y=1,即點(diǎn)P在拋物線上。
∴存在符合條件的點(diǎn)P,點(diǎn)P的坐標(biāo)為(﹣2,1).。
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線 a≠0)的對(duì)稱軸是直線l,頂點(diǎn)為點(diǎn)M.若自變量x和函數(shù)值y1的部分對(duì)應(yīng)值如下表所示:
x | … | ―1 | 0 | 3 | … |
… | 0 | 0 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對(duì)稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F(xiàn)為拋物線上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對(duì)稱軸向下以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(﹣1,0),對(duì)稱軸為直線x=﹣2.
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);
(3)點(diǎn)P是(2)中拋物線對(duì)稱軸上一動(dòng)點(diǎn),且以1個(gè)單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為 秒時(shí),△PAD的周長(zhǎng)最。慨(dāng)t為 秒時(shí),△PAD是以AD為腰的等腰三角形?(結(jié)果保留根號(hào))
②點(diǎn)P在運(yùn)動(dòng)過程中,是否存在一點(diǎn)P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O(shè)為原點(diǎn),OC、OA所在直線為軸建立坐標(biāo)系.拋物線頂點(diǎn)為A,且經(jīng)過點(diǎn)C.點(diǎn)P在線段AO上由A向點(diǎn)O運(yùn)動(dòng),點(diǎn)O在線段OC上由C向點(diǎn)O運(yùn)動(dòng),QD⊥OC交BC于點(diǎn)D,OD所在直線與拋物線在第一象限交于點(diǎn)E.
(1)求拋物線的解析式;
(2)點(diǎn)E′是E關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)Q運(yùn)動(dòng)到何處時(shí),四邊形OEAE′是菱形?
(3)點(diǎn)P、Q分別以每秒2個(gè)單位和3個(gè)單位的速度同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),PB∥OD?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤(rùn)不低于300元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013年四川眉山11分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B在x軸上,點(diǎn)C、D在y軸上,且OB=OC=3,OA=OD=1,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn),直線AD與拋物線交于另一點(diǎn)M.
(1)求這條拋物線的解析式;
(2)P為拋物線上一動(dòng)點(diǎn),E為直線AD上一動(dòng)點(diǎn),是否存在點(diǎn)P,使以點(diǎn)A、P、E為頂點(diǎn)的三角形為等腰直角三角形?若存在,請(qǐng)求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)請(qǐng)直接寫出將該拋物線沿射線AD方向平移個(gè)單位后得到的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013年廣東梅州10分)如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)寫出以A,B,C為頂點(diǎn)的三角形面積;
(2)過點(diǎn)E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),以MN為一邊,拋物線上的任一點(diǎn)P為另一頂點(diǎn)做平行四邊形,當(dāng)平行四邊形的面積為8時(shí),求出點(diǎn)P的坐標(biāo);
(3)過點(diǎn)D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點(diǎn)Q(點(diǎn)Q在第一象限),使得以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似,求線段QD的長(zhǎng)(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
某校為培育青少年科技創(chuàng)新能力,舉辦了動(dòng)漫制作活動(dòng),小明設(shè)計(jì)了點(diǎn)做圓周運(yùn)動(dòng)的一個(gè)雛形,如圖所示,甲、乙兩點(diǎn)分別從直徑的兩端點(diǎn)A、B以順時(shí)針、逆時(shí)針的方向同時(shí)沿圓周運(yùn)動(dòng),甲運(yùn)動(dòng)的路程l(cm)與時(shí)間t(s)滿足關(guān)系:(t≥0),乙以4cm/s的速度勻速運(yùn)動(dòng),半圓的長(zhǎng)度為21cm.
(1)甲運(yùn)動(dòng)4s后的路程是多少?
(2)甲、乙從開始運(yùn)動(dòng)到第一次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
(3)甲、乙從開始運(yùn)動(dòng)到第二次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com