為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調,本市企業(yè)按成本價提供產品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
(2)設李明獲得的利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于300元,那么政府為他承擔的總差價最少為多少元?
解:(1)當x=20時,y=﹣10x+500=﹣10×20+500=300,
300×(12﹣10)=300×2=600,
∴政府這個月為他承擔的總差價為600元。
(2)依題意得,,
∵a=﹣10<0,∴當x=30時,w有最大值4000。
∴當銷售單價定為30元時,每月可獲得最大利潤4000.
(3)由題意得:﹣10x2+600x﹣5000=3000,
解得:x1=20,x2=40。
∵a=﹣10<0,拋物線開口向下,
∴結合圖象可知:當20≤x≤40時,w≥3000。
又∵x≤25,∴當20≤x≤25時,w≥3000。
設政府每個月為他承擔的總差價為p元,
∴。
∵k=﹣20<0,∴p隨x的增大而減小。
∴當x=25時,p有最小值500。
∴銷售單價定為25元時,政府每個月為他承擔的總差價最少為500元。
解析試題分析:(1)把x=20代入y=﹣10x+500求出銷售的件數(shù),然后求出政府承擔的成本價與出廠價之間的差價。
(2)由利潤=銷售價﹣成本價,得,把函數(shù)轉化成頂點坐標式,根據二次函數(shù)的性質求出最大利潤。
(3)令﹣10x2+600x﹣5000=3000,求出x的值,結合圖象求出利潤的范圍,然后設設政府每個月為他承擔的總差價為p元,根據一次函數(shù)的性質求出總差價的最小值。
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,四邊形OABC是邊長為2的正方形,二次函數(shù)的圖象經過點A,B,與x軸分別交于點E,F(xiàn),且點E的坐標為(,0),以OC為直徑作半圓,圓心為D.
(1)求二次函數(shù)的解析式;
(2)求證:直線BE是⊙D的切線;
(3)若直線BE與拋物線的對稱軸交點為P,M是線段CB上的一個動點(點M與點B,C不重合),過點M作MN∥BE交x軸與點N,連結PM,PN,設CM的長為t,△PMN的面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在直角體系中,直線AB交x軸于點A(5,0),交y軸于點B,AO是⊙M的直徑,其半圓交AB于點C,且AC=3。取BO的中點D,連接CD、MD和OC。
(1)求證:CD是⊙M的切線;
(2)二次函數(shù)的圖象經過點D、M、A,其對稱軸上有一動點P,連接PD、PM,求△PDM的周長最小時點P的坐標;
(3)在(2)的條件下,當△PDM的周長最小時,拋物線上是否存在點Q,使?若存在,求出點Q的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在坐標系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),拋物線的圖象過C點.
(1)求拋物線的解析式;
(2)平移該拋物線的對稱軸所在直線l.當l移動到何處時,恰好將△ABC的面積分為相等的兩部分?
(3)點P是拋物線上一動點,是否存在點P,使四邊形PACB為平行四邊形?若存在,求出P點坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,二次函數(shù)的圖象與x軸相交于點A(﹣3,0)、B(﹣1,0),與y軸相交于點C(0,3),點P是該圖象上的動點;一次函數(shù)y=kx﹣4k(k≠0)的圖象過點P交x軸于點Q.
(1)求該二次函數(shù)的解析式;
(2)當點P的坐標為(﹣4,m)時,求證:∠OPC=∠AQC;
(3)點M,N分別在線段AQ、CQ上,點M以每秒3個單位長度的速度從點A向點Q運動,同時,點N以每秒1個單位長度的速度從點C向點Q運動,當點M,N中有一點到達Q點時,兩點同時停止運動,設運動時間為t秒.連接AN,當△AMN的面積最大時,
①求t的值;
②直線PQ能否垂直平分線段MN?若能,請求出此時點P的坐標;若不能,請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
(2013年四川自貢14分)如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D(2,3),tan∠DBA=.
(1)求拋物線的解析式;
(2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經過點(1,0),(5,0),(3,﹣4).
(1)求該二次函數(shù)的解析式;
(2)當y>﹣3,寫出x的取值范圍;
(3)A、B為直線y=﹣2x﹣6上兩動點,且距離為2,點C為二次函數(shù)圖象上的動點,當點C運動到何處時△ABC的面積最?求出此時點C的坐標及△ABC面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,直線x=-4與x軸交于點E,一開口向上的拋物線過原點交線段OE于點A,交直線x=-4于點B,過B且平行于x軸的直線與拋物線交于點C,直線OC交直線AB于D,且AD:BD=1:3.
(1)求點A的坐標;
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關系式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com