某校為培育青少年科技創(chuàng)新能力,舉辦了動(dòng)漫制作活動(dòng),小明設(shè)計(jì)了點(diǎn)做圓周運(yùn)動(dòng)的一個(gè)雛形,如圖所示,甲、乙兩點(diǎn)分別從直徑的兩端點(diǎn)A、B以順時(shí)針、逆時(shí)針的方向同時(shí)沿圓周運(yùn)動(dòng),甲運(yùn)動(dòng)的路程l(cm)與時(shí)間t(s)滿足關(guān)系:(t≥0),乙以4cm/s的速度勻速運(yùn)動(dòng),半圓的長度為21cm.

(1)甲運(yùn)動(dòng)4s后的路程是多少?
(2)甲、乙從開始運(yùn)動(dòng)到第一次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?
(3)甲、乙從開始運(yùn)動(dòng)到第二次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?

(1)14cm  (2)3s   (3)7s

解析試題分析:(1)根據(jù)題目所給的函數(shù)解析式把t=4s代入求得l的值即可。
(2)根據(jù)圖可知,二者第一次相遇走過的總路程為半圓,分別求出甲、乙走的路程,列出方程求解即可。
(3)根據(jù)圖可知,二者第二次相遇走過的總路程為一圈半,也就是三個(gè)半圓,分別求出甲、乙走的路程,列出方程求解即可。 
解:(1)當(dāng)t=4s時(shí),=8+6=14(cm),
答:甲運(yùn)動(dòng)4s后的路程是14cm。
(2)由圖可知,甲乙第一次相遇時(shí)走過的路程為半圓21cm,
甲走過的路程為,乙走過的路程為4t,
+4t=21,
解得:t=3或t=﹣14(不合題意,舍去)。
答:甲、乙從開始運(yùn)動(dòng)到第一次相遇時(shí),它們運(yùn)動(dòng)了3s。
(3)由圖可知,甲乙第一次相遇時(shí)走過的路程為三個(gè)半圓:3×21=63cm,
+4t=63,
解得:t=7或t=﹣18(不合題意,舍去)。
答:甲、乙從開始運(yùn)動(dòng)到第二次相遇時(shí),它們運(yùn)動(dòng)了7s

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在坐標(biāo)系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),拋物線的圖象過C點(diǎn).

(1)求拋物線的解析式;
(2)平移該拋物線的對稱軸所在直線l.當(dāng)l移動(dòng)到何處時(shí),恰好將△ABC的面積分為相等的兩部分?
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PACB為平行四邊形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。

(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計(jì)算它的面積;
(3)若點(diǎn)F為對稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,如果存在,請求出點(diǎn)G的坐標(biāo),如果不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA=2,OC=6,在OC上取點(diǎn)D將△AOD沿AD翻折,使O點(diǎn)落在AB邊上的E點(diǎn)處,將一個(gè)足夠大的直角三角板的頂點(diǎn)P從D點(diǎn)出發(fā)沿線段DA→AB移動(dòng),且一直角邊始終經(jīng)過點(diǎn)D,另一直角邊所在直線與直線DE,BC分別交于點(diǎn)M,N.
(1)填空:D點(diǎn)坐標(biāo)是(  ,  ),E點(diǎn)坐標(biāo)是(  ,  );
(2)如圖1,當(dāng)點(diǎn)P在線段DA上移動(dòng)時(shí),是否存在這樣的點(diǎn)M,使△CMN為等腰三角形?若存在,請求出M點(diǎn)坐標(biāo);若不存在,請說明理由;

(3)如圖2,當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),設(shè)P點(diǎn)坐標(biāo)為(x,2),記△DBN的面積為S,請直接寫出S與x之間的函數(shù)關(guān)系式,并求出S隨x增大而減小時(shí)所對應(yīng)的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,矩形ABCO的頂點(diǎn)A、C分別在y軸、x軸正半軸上,點(diǎn)P在AB上,PA=1,AO=2.經(jīng)過原點(diǎn)的拋物線的對稱軸是直線x=2.

(1)求出該拋物線的解析式.
(2)如圖1,將一塊兩直角邊足夠長的三角板的直角頂點(diǎn)放在P點(diǎn)處,兩直角邊恰好分別經(jīng)過點(diǎn)O和C.現(xiàn)在利用圖2進(jìn)行如下探究:
①將三角板從圖1中的位置開始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),兩直角邊分別交OA、OC于點(diǎn)E、F,當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止旋轉(zhuǎn).請你觀察、猜想,在這個(gè)過程中,的值是否發(fā)生變化?若發(fā)生變化,說明理由;若不發(fā)生變化,求出的值.
②設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為D,頂點(diǎn)為M,在①的旋轉(zhuǎn)過程中,是否存在點(diǎn)F,使△DMF為等腰三角形?若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線x=-4與x軸交于點(diǎn)E,一開口向上的拋物線過原點(diǎn)交線段OE于點(diǎn)A,交直線x=-4于點(diǎn)B,過B且平行于x軸的直線與拋物線交于點(diǎn)C,直線OC交直線AB于D,且AD:BD=1:3.

(1)求點(diǎn)A的坐標(biāo);
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

由示意圖可見,拋物線y=x2 +px+q   ①若有兩點(diǎn)A(a,yl)、B(b,y2)(其中a<b)在x軸下方,則拋物線必與x軸有兩個(gè)交點(diǎn)C(x1,O)、D(x2,O)(其中xl<x2),且滿足xl<a<b<x2.當(dāng)A(1,- 2.005),且xl、x2均為整數(shù)時(shí),求二次函數(shù)的表達(dá)式,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,A是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)A作AB⊥y軸于點(diǎn)B,點(diǎn)P在x軸上,△ABP的面積為2,則k的值為(     )

A.1 B.2 C.3 D.4 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,A、B是雙曲線上的點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別是,線段AB的延長線交x軸于點(diǎn)C,若,則的值為(     )

A.2            B.3           C.4        D.6

查看答案和解析>>

同步練習(xí)冊答案