【題目】如圖,在△ABC中,AB=AC,AD和BE是高,它們相交于點H,且AE=BE
求證:AH=2BD
【答案】詳見解析
【解析】
由等腰三角形的底邊上的垂線與中線重合的性質(zhì)求得BC=2BD,根據(jù)直角三角形的兩個銳角互余的特性求知∠1+∠C=90°;又由已知條件AE⊥AC知∠2+∠C=90°,所以根據(jù)等量代換求得∠1=∠2;然后由三角形全等的判定定理SAS證明△AEH≌△BEC,再根據(jù)全等三角形的對應(yīng)邊相等及等量代換求得AH=2BD
∵AD是高,BE是高
∴∠EBC+∠C=∠CAD+∠C=90°
∴∠EBC=∠CAD
又∵AE=BE
∠AEH=∠BEC
∴△AEH△BEC(ASA)
∴AH =BC
∵AB=AC,AD是高
∴BC=2BD
∴AH =2BD
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線,直線,與相交于點,,分別與軸相交于點.
(1)求點P的坐標.
(2)若,求x的取值范圍.
(3)點為x軸上的一個動點,過作x軸的垂線分別交和于點,當EF=3時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B為格點
(Ⅰ)AB的長等于__
(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點C,使得CA=CB且△ABC的面積等于,并簡要說明點C的位置是如何找到的__________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一農(nóng)戶要建一矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為了方便進出,在垂直于住房墻的一邊留一個1m寬的門.所圍成矩形豬舍的長、寬分別為多少時,豬舍的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,BD⊥AC于點D,CE⊥AB于點E,CE和BD交于點O,AO的延長線交BC于點F,則圖中全等的三角形有( )
A.8對B.7對C.6對D.5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O直徑,⊙O過AC的中點D,DE⊥BC,垂足為E.
(1)由這些條件,你能得出哪些結(jié)論?(要求:不準標其他字母,找結(jié)論過程中所連的輔助線不能出現(xiàn)在結(jié)論中,不寫推理過程,寫出4個結(jié)論即可)
(2)若∠ABC為直角,其他條件不變,除上述結(jié)論外你還能推出哪些新的正確結(jié)論?并畫出圖形.(要求:寫出6個結(jié)論即可,其他要求同(1))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,現(xiàn)把矩形紙片ABCD沿對角線BD折疊,點C與C′重合,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,與是兩個全等的等邊三角形,.有下列四個結(jié)論:①;②;③直線垂直平分線段;④四邊形是軸對稱圖形.其中正確的結(jié)論有_____.(把正確結(jié)論的序號填在橫線上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com