【題目】如圖,一農(nóng)戶要建一矩形豬舍,豬舍的一邊利用長(zhǎng)為12m的住房墻,另外三邊用25m長(zhǎng)的建筑材料圍成,為了方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門.所圍成矩形豬舍的長(zhǎng)、寬分別為多少時(shí),豬舍的面積最大,最大面積是多少?

【答案】矩形豬舍的長(zhǎng)、寬分別為12米、7米,豬舍的面積最大,最大面積是84平方米.

【解析】

設(shè)矩形豬舍垂直于住房墻一邊長(zhǎng)為xm,可以得出平行于墻的一邊的長(zhǎng)為(25﹣2x+1)m,根據(jù)矩形的面積公式建立函數(shù)解析式求出其最值即可

設(shè)矩形豬舍垂直于住房墻一邊長(zhǎng)為xm可以得出平行于墻的一邊的長(zhǎng)為(25﹣2x+1)m,

由題意得

y=x(25﹣2x+1)=﹣2,對(duì)稱軸為x=,

∵25﹣2x+1≤12,25﹣2x+1>0,

∴7≤x<13,

y=﹣2,-2<0,在對(duì)稱軸右側(cè)y隨著x的增大而減小,

所以當(dāng)x=7米時(shí),即矩形豬舍的長(zhǎng)、寬分別為12米、7米時(shí),豬舍的面積最大,最大面積是84平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+4x+5x軸,y軸分別交于A,B,C三點(diǎn).

(1)請(qǐng)直接寫出A,B,C三點(diǎn)坐標(biāo):A(_____,_____)、B(_____,______)、C(______,______)

(2)若⊙MA、B、C三點(diǎn),求圓心M的坐標(biāo),并求⊙M的面積;

(3)(2)的條件下,在拋物線上是否存在點(diǎn)N,使得由A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作發(fā)現(xiàn):如圖1D是等邊△ABCBA上的一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF,易證AF=BD(不需要證明);

類比猜想:①如圖2,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABCBA的延長(zhǎng)線上時(shí),其它作法與圖1相同,猜想AFBD在圖1中的結(jié)論是否仍然成立。

深入探究:②如圖3,當(dāng)動(dòng)點(diǎn)D在等邊△ABCBA上的一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方、下方分別作等邊△DCF和等邊△DCF′,連接AF,BF′你能發(fā)現(xiàn)AFBF′AB有何數(shù)量關(guān)系,并證明你發(fā)現(xiàn)的結(jié)論。

③如圖4,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABCBA的延長(zhǎng)線上時(shí),其它作法與圖3相同,猜想AFBF′AB在上題②中的結(jié)論是否仍然成立,若不成立,請(qǐng)給出你的結(jié)論并證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識(shí)改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到黑龍灘(用C表示)開展社會(huì)實(shí)踐活動(dòng),車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生在素質(zhì)教育基地進(jìn)行社會(huì)實(shí)踐活動(dòng),幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:黃瓜的種植成本是1/kg,售價(jià)為1.5/kg;茄子的種植成本是1.2/kg,售價(jià)是2/kg

(1)請(qǐng)問采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABCDEC重合放置,其中C=900B=E=300.

1)操作發(fā)現(xiàn)如圖2,固定ABC,使DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DEAC的位置關(guān)系是

設(shè)BDC的面積為S1,AEC的面積為S2。則S1S2的數(shù)量關(guān)系是 。

2)猜想論證

當(dāng)DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了BDCAECBC,CE邊上的高,請(qǐng)你證明小明的猜想。

3)拓展探究

已知ABC=600點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OEABBC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使SDCF =SBDC,請(qǐng)直接寫出相應(yīng)的BF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,ADBE是高,它們相交于點(diǎn)H,且AEBE

求證:AH2BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,ADBC,ABBC,CDDE,CD=ED,AD=2,BC=3,則ADE的面積為( )

A.1 B.2 C.5 D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點(diǎn)B落在點(diǎn)D的位置,則∠1-2的度數(shù)是(

A. 32° B. 64° C. 65° D. 70°

查看答案和解析>>

同步練習(xí)冊(cè)答案