【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊的放在一個長為 ,寬為的長方形內(nèi),該長方形內(nèi)部未被卡片覆蓋的部分用陰影表示.

1)能否用只含的式子表示出圖②中兩塊陰影部分的周長和?_____(填不能);(2)若能,請你用只含的式子表示出中兩塊陰影部分的周長和;若不能,請說明理由_____.

【答案】1)能; 2)能;理由見解析

【解析】

設(shè)圖①小長方形的長為a,寬為b,由圖②表示出上面與下面兩個長方形的周長,求出之和,根據(jù)題意得到,代入計算即可得到結(jié)果.

1)能;故答案為:能;

2)能,理由如下:

設(shè)小長方形的長為a,寬為b,

上面的長方形周長為:

下面的長方形周長為:

兩式聯(lián)立,總周長為:

(由圖可得)

陰影部分總周長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場用24000元購入一批空調(diào)然后以每臺3000元的價格銷售,因天氣炎熱空調(diào)很快售完;商場又以52000元的價格再次購入該種型號的空調(diào),數(shù)量是第一次購入的2但購入的單價上調(diào)了200,售價每臺也上調(diào)了200

1商場第一次購入的空調(diào)每臺進價是多少元?

2商場既要盡快售完第二次購入的空調(diào),又要在這兩次空調(diào)銷售中獲得的利潤率不低于22%打算將第二次購入的部分空調(diào)按每臺九五折出售,最多可將多少臺空調(diào)打折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負,一天中七次行駛紀(jì)錄如下.(單位:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

求收工時,檢修小組在地的哪個方向?距離地多遠?

在第幾次紀(jì)錄時距地最遠?

若汽車行駛每千米耗油升,問從地出發(fā),檢修結(jié)束后再回到地共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx-1x軸、y軸分別交于B、C兩點,OB:OC=.

(1)B點的坐標(biāo)和k的值.

(2)若點A(x,y)是第一象限內(nèi)的直線y=kx-1上的一個動點,當(dāng)點A運動過程中,試寫出△AOB的面積Sx的函數(shù)關(guān)系式;

(3)(2)的條件下,當(dāng)點A運動到什么位置時,△AOB的面積是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB= 90°,CD是∠ACB的平分線,CD的垂直平分線分別交AC,CD,BC于點E ,O,F.求證:四邊形CEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

如果一個三角形的三邊長分別為a,b,c,記p=,那么這個三角形的面積S=.這個公式叫海倫公式,它是利用三角形三條邊的邊長直接求三角形面積的公式。中國的秦九韶也得出了類似的公式,稱三斜求積術(shù),故這個公式又被稱為海倫秦---九韶公式完成下列問題:

如圖,在ABC中,a=7b=5,c=6.

1)求ABC的面積;

2)設(shè)AB邊上的高為h1AC邊上的高為h2,求h1 +h2的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》,由四個全等的直角三角形與中間的小正方形拼成的一個大正方形如果大正方形的面積是13,小正方形的面積是4,直角三角形的較短直角邊為a,較長直角邊為b,那么的值為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,點OAD上一動點(4OA8),以O為圓心,OA的長為半徑的圓交邊CD于點E,連接OEAE,過點E作⊙O的切線交邊BCF

1)求證:ODE∽△ECF

2)在點O的運動過程中,設(shè)DE=

①求的最大值,并求此時⊙O的半徑長;

②判斷CEF的周長是否為定值,若是,求出CEF的周長;否則,請說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點,過點A作AF∥BC交BE的延長線于F,連接CF.

(1)求證:AD=AF;

(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案