【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列四個結(jié)論:①abc>0;②b2﹣4ac>0;③a+b+c<0;④b>2a.其中正確的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】
①由拋物線的開口方向,拋物線與y軸交點的位置、對稱軸即可確定a、b、c的符號,即得abc的符號;②由拋物線與x軸有兩個交點判斷即可;③x=﹣1時,y>0,即a﹣b+c>0,所以a+c>b;④由﹣>﹣1,a<0,得到b>2a,所以b﹣2a>0.
①由開口向下,可得a<0,又由拋物線與y軸交于正半軸,可得c>0,然后由對稱軸在y軸左側(cè),得到b與a同號,則可得b<0,abc>0,故①正確;
②由拋物線與x軸有兩個交點,可得b2﹣4ac>0,故②正確;
③∵x=﹣1時,y>0,即a﹣b+c>0,
∴a+c>b,
∴a+c>b,
∴a+b+c<0,故③正確;
④∵拋物線對稱軸x=﹣>﹣1,a<0,
∴b>2a,故④正確.
綜上所述,正確的結(jié)論有4個.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.
(1)求證:D是BC的中點;
(2)求證:△BEC∽△ADC;
(3)若CE=5,BD=6.5,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點O,CD是弦,且CD⊥AB于點F,連接AD,過點B的直線與線段AD的延長線交于點E,且∠E=∠ACF.
(1)若CD=2, AF=3,求⊙O的周長;
(2)求證:直線BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E,過點D作DF⊥AC于點F,交AB的延長線于點G.
(1)求證:DF是⊙O的切線;
(2)已知BD=2,CF=2,求AE和BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E,過點D作DF⊥AC于點F,交AB的延長線于點G.
(1)求證:DF是⊙O的切線;
(2)已知BD=2,CF=2,求AE和BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小張準備把一根長為32cm的鐵絲剪成兩段,并把每一段各圍成一個正方形.(1)要使這兩個正方形的面積之和等于40cm2,小張該怎么剪?
(2)小李對小張說:“這兩個正方形的面積之和不可能等于30cm2.”他的說法對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過點A(2,0),B(0,2),與x軸交于另一點C.
(1)求拋物線的解析式及點C的坐標;
(2)點P是拋物線y=﹣x2+bx+c在第一象限上的點,過點P分別向x軸、y軸作垂線,垂足分別為D,E,求四邊形ODPE的周長的最大值;
(3)如圖2,點P是拋物線y=﹣x2+bx+c在第一象限上的點,過點P作PN⊥x軸,垂足為N,交AB于M,連接PB,PA.設點P的橫坐標為t,當△ABP的面積等于△ABC面積的時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點,頂點C的縱坐標為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論正確的是 .(寫出所有正確結(jié)論的序號)
①b>0
②a﹣b+c<0
③陰影部分的面積為4
④若c=﹣1,則b2=4a.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有A、B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標有數(shù)字1和2.B布袋中有三個完全相同的小球,分別標有數(shù)字-l,-2和-3.小強從A布袋中隨機取出一個小球,記錄其標有的數(shù)字為a,再從B布袋中隨機取出一個小球,記錄其標有的數(shù)字為b,這樣就確定點Q的一個坐標為(a,b).
⑴用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;
⑵求點Q落在直線y=x-3上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com