分析 過A作AC垂直于y軸,過B作BD垂直于y軸,易證△AOC∽△OBD,利用反比例函數(shù)k的幾何意義求出兩三角形的面積,得出面積比,在直角三角形AOB中,利用銳角三角函數(shù)定義即可求出tan∠B的值,即OA與OB的比值,利用面積比等于相似比的平方,即可求出k值.
解答 解:過A作AC⊥y軸,過B作BD⊥y軸,可得∠ACO=∠BDO=90°,
∴∠AOC+∠OAC=90°,
∵OA⊥OB,
∴∠AOC+∠BOD=90°,
∴∠OAC=∠BOD,
∴△AOC∽△OBD,
∵點(diǎn)A、B分別在反比例函數(shù)y=$\frac{1}{x}$(x>0),y=$\frac{k}{x}$(x>0)的圖象上,
∴S△AOC=$\frac{1}{2}$,S△OBD=|$\frac{k}{2}$|,
∴S△AOC:S△OBD=1:|k|,
∴($\frac{OA}{OB}$)2=1:|k|,
則在Rt△AOB中,tanB=$\frac{OA}{OB}$=$\frac{\sqrt{3}}{3}$,
∴1:|k|=1:3,
∴|k|=3
∵y=$\frac{k}{x}$(x>0)的圖象在第四象限,
∴k=-3,
∴y=$\frac{k}{x}$的表達(dá)式為:y=-$\frac{3}{x}$.
點(diǎn)評 本題考查了相似三角形的判定與性質(zhì),銳角三角函數(shù)定義,以及反比例函數(shù)k的幾何意義,熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{31}{2}$,15 | B. | 15,$\frac{31}{2}$ | C. | 15,15 | D. | $\frac{31}{2}$,$\frac{31}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com