【題目】已知直線(xiàn)BC//ED.

(1)如圖1,若點(diǎn)A在直線(xiàn)DE上,且B=44°,∠EAC=57°,求BAC的度數(shù);

(2)如圖2,若點(diǎn)A是直線(xiàn)DE的上方一點(diǎn),點(diǎn)GBC的延長(zhǎng)線(xiàn)上求證:∠ACG=∠BAC+∠ABC;

(3)如圖3,FH平分AFE,CH平分ACG,且FHCA2倍少60°,直接寫(xiě)出A的度數(shù).

【答案】(1)79°;(2)見(jiàn)解析;(3)40°

【解析】分析1)由平行線(xiàn)的性質(zhì)得到∠BAE+B=180°,∠EAC=∠C,再由平角的定義即可得到結(jié)論;

2)作AF//BC,得到AF//ED//BC,再由平行線(xiàn)的性質(zhì)得到∠FAC =ACG ,∠ABC=FAB,即可得到結(jié)論

3)作AM//BC,HN//BC, 得到AM//BC//ED,HN//BC//ED

又設(shè)∠ACH=GCH=x, AFH=EFH =y,則有∠A=2x2y, FHC=xy,得到∠A=2FHC,又已知∠FHC=2A60°,即可得到結(jié)論

詳解1)∵BC//ED,∴∠BAE+B=180°,∠EAC=∠C,∴BAC=180°-∠B-∠EAC=79°;

2)如圖,作AF//BC.又∵BC//ED,∴AF//ED//BC

∴∠FAC =ACG ,且∠ABC=FAB,∴∠ACG=FAC=BAC+FAB=BAC+ABC

3)作AM//BC,HN//BC ∴可證AM//BC//ED,HN//BC//ED

又設(shè)∠ACH=GCH=x, AFH=EFH =y,

∴∠A=2x2y, FHC=xy,

∴∠A=2FHC

又∵∠FHC=2A60°,

∴∠A=40°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一家商店要進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付兩組費(fèi)用共3520元;若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可完成,需付兩組費(fèi)用共3480元,問(wèn):

(1)甲、乙兩組工作一天,商店應(yīng)各付多少元?

(2)已知甲組單獨(dú)做需12天完成,乙組單獨(dú)做需24天完成,單獨(dú)請(qǐng)哪組,商店所付費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,A,B,C,D是四個(gè)小城鎮(zhèn),除BC外,它們之間都有筆直的公路連接,公共汽車(chē)行駛于城鎮(zhèn)之間,其票價(jià)與路程成正比.已知各城鎮(zhèn)間的公共汽車(chē)票價(jià)如下: A——B:10元;A——C:12.5元;A——D:8元; B——D:6元;C——D:4.5元.為了方便B,C之間的交通,在B,C之間建成一條筆直的公路,請(qǐng)按上述標(biāo)準(zhǔn)計(jì)算出B,C之間公共汽車(chē)的票價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線(xiàn)m經(jīng)過(guò)點(diǎn)A,BD⊥直線(xiàn)m, CE⊥直線(xiàn)m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線(xiàn)m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是交警在一個(gè)路口統(tǒng)計(jì)的某個(gè)時(shí)段來(lái)往車(chē)輛的車(chē)速(單位:千米/時(shí))情況.

(1)這些車(chē)的平均速度為__________千米/時(shí);

(2)車(chē)速的眾數(shù)是__________;

(3)車(chē)速的中位數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,邊長(zhǎng)為1的正方形網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)A、BC都在格點(diǎn)上.

(1)作關(guān)于△ABC關(guān)于x軸的對(duì)稱(chēng)圖形△DEF,(其中A、B、C的對(duì)稱(chēng)點(diǎn)分別是D、E、F),并寫(xiě)出點(diǎn)D坐標(biāo);

(2)Px軸上一點(diǎn),請(qǐng)?jiān)趫D中畫(huà)出使△PAB的周長(zhǎng)最小時(shí)的點(diǎn)P,并直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,點(diǎn)的邊上一點(diǎn),連結(jié)沿折疊,使點(diǎn)落在處,令

1)如圖②,當(dāng)點(diǎn)落在四邊形內(nèi)部時(shí),若,則的度數(shù)為 ;

2)事實(shí)上,當(dāng)點(diǎn)落在四邊形內(nèi)部時(shí),之間的數(shù)量關(guān)系始終保持不變,請(qǐng)寫(xiě)出之間的數(shù)量關(guān)系,并利用圖②進(jìn)行證明;

3)如圖③,當(dāng)點(diǎn)落在四邊形外部時(shí),直接寫(xiě)出之間的數(shù)量關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) A(0,4) y 軸上,點(diǎn) B(b,0) x 軸上一動(dòng)點(diǎn), 4 b 4,△ABC 是以 AB 為直角邊,B 為直角頂點(diǎn)的等腰直角三角形.

(1)求點(diǎn) C 的坐標(biāo)(用含 b 的式子表示);

(2) x 軸為對(duì)稱(chēng)軸,作點(diǎn) C 的對(duì)稱(chēng)點(diǎn) C 連接 BC、AC,請(qǐng)把圖形補(bǔ)充完整,并求出△ABC的面積(用含 b 的式子表示);

(3)點(diǎn) B 在運(yùn)動(dòng)過(guò)程中, OAC 的度數(shù)是否發(fā)生變化,若變化請(qǐng)說(shuō)明理由;若不變化,請(qǐng)直接 寫(xiě)出 OAC 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市公交公司為應(yīng)對(duì)春運(yùn)期間的人流高峰,計(jì)劃購(gòu)買(mǎi)A、B兩種型號(hào)的公交車(chē)共10輛,若購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)2輛,B型公交車(chē)3輛,共需650萬(wàn)元,

(1)試問(wèn)該公交公司計(jì)劃購(gòu)買(mǎi)A型和B型公交車(chē)每輛各需多少萬(wàn)元?

(2)若該公司預(yù)計(jì)在某條線(xiàn)路上A型和B型公交車(chē)每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用W不超過(guò)1200萬(wàn)元,且確保這10輛公交車(chē)在某條線(xiàn)路的年均載客量總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車(chē)方案?哪種購(gòu)車(chē)方案的總費(fèi)用W最少?最少總費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案