【題目】如圖,已知AE、BD相交于點C,AC=AD,BC=BE,F(xiàn)、G、H分別是DC、CE、AB的中點.求證:
(1)HF=HG;
(2)∠FHG=∠DAC.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)連接AF,BG.根據(jù)等腰三角形的三線合一得到直角三角形,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半進行證明;
(2)根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到FH=BH,則∠HFB=∠FBH,同理∠AGH=∠GAH,則∠D=∠ACD=∠CAB+∠ABC=∠BFH+∠AGH.從而證明結(jié)論.
證明:(1)連接AF,BG,
∵AC=AD,BC=BE,F(xiàn)、G分別是DC、CE的中點,
∴AF⊥BD,BG⊥AE.
在直角三角形AFB中,
∵H是斜邊AB中點,
∴FH=AB.
同理得HG=AB,
∴FH=HG.
(2)∵FH=BH,
∴∠HFB=∠FBH;
∵∠AHF是△BHF的外角,
∴∠AHF=∠HFB+∠FBH=2∠BFH;
同理∠AGH=∠GAH,∠BHG=∠AGH+∠GAH=2∠AGH,
∴∠ADB=∠ACD=∠CAB+∠ABC=∠BFH+∠AGH.
又∵∠DAC=180°﹣∠ADB﹣∠ACD,
=180°﹣2∠ADB,
=180°﹣2(∠BFH+∠AGH),
=180°﹣2∠BFH﹣2∠AGH,
=180°﹣∠AHF﹣∠BHG,
而根據(jù)平角的定義可得:∠FHG=180°﹣∠AHF﹣∠BHG,
∴∠FHG=∠DAC.
科目:初中數(shù)學 來源: 題型:
【題目】工程上常用鋼珠來測量零件上小孔的直徑.假設鋼珠的直徑是12毫米,測得鋼珠頂端離零件表面的距離為9毫米,如圖所示,則這個小孔的直徑AB是_________毫米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,有點A(a+1,2),B(-a-5,2a+1).
(1)若線段AB∥y軸,求點A、B的坐標;
(2)當點B到y軸的距離是到x軸的距離4倍時,求點B所在的象限位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①平方等于其本身的數(shù)有0,±1;②32xy3是4次單項式;③將方程中的分母化為整數(shù),得=12;④平面內(nèi)有4個點,過每兩點畫直線,可畫6條、4條或1條.其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)已知購買1個足球和1個籃球共需130元,購買2個足球和1個籃球共需180元.
(1)求每個足球和每個籃球的售價;
(2)如果某校計劃購買這兩種球共54個,總費用不超過4000元,問最多可買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,點E從點A出發(fā),以每秒個單位長度的速度沿邊AC向終點C運動,E點出發(fā)的同時,點F從點B出發(fā),以每秒2個單位長度的速度沿邊BA向終點A運動,連結(jié)EF,將線段EF繞點F逆時針旋轉(zhuǎn)得到線段FG,以EF、FG為邊作正方形EFGH,設點F運動的時間為t秒
用含t的代數(shù)式表示點E到邊AB的距離;
當點G落在邊AB上時,求t的值;
連結(jié)BG,設的面積為S個平方單位,求S與t之間的函數(shù)關系式;
直接寫出正方形EFGH的頂點H,G分別與點A,C距離相等時的t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AB=6,BC=8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )
A. 6B. 5C. 4D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種小商品的成本價為10元/kg,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w(kg)與銷售價x(元/kg)有如下關系w=﹣2x+100,設這種產(chǎn)品每天的銷售利潤為y(元).
(1)求y與x之間的函數(shù)關系式;
(2)當售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)解方程:
(2)解方程:
(3)如圖所示,小明將一張正方形紙片,剪去一個寬為4cm的長條后,再從剩下的長方形紙片上剪去一個寬為5cm的長條。如果兩次剪下的長條面積正好相等,那么每個長條的面積為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com