【題目】(8分)已知購(gòu)買1個(gè)足球和1個(gè)籃球共需130元,購(gòu)買2個(gè)足球和1個(gè)籃球共需180元.

(1)求每個(gè)足球和每個(gè)籃球的售價(jià);

(2)如果某校計(jì)劃購(gòu)買這兩種球共54個(gè),總費(fèi)用不超過(guò)4000元,問(wèn)最多可買多少個(gè)籃球?

【答案】(1)每個(gè)足球50元,每個(gè)籃球80元;(2)43

【解析】

試題(1)設(shè)每個(gè)籃球x元,每個(gè)足球y元,根據(jù)買1個(gè)籃球和2個(gè)足球共需180元,購(gòu)買1個(gè)籃球和1個(gè)足球共需130元,列出方程組,求解即可;

(2)設(shè)買m個(gè)籃球,則購(gòu)買(54﹣m)個(gè)足球,根據(jù)總價(jià)錢不超過(guò)4000元,列不等式求出x的最大整數(shù)解即可.

試題解析:(1)設(shè)每個(gè)籃球x元,每個(gè)足球y元,由題意得,,解得:

答:每個(gè)足球50元,每個(gè)籃球80元;

(2)設(shè)買m個(gè)籃球,則購(gòu)買(54﹣m)個(gè)足球,由題意得,80m+50(54﹣m)≤4000,解得:m≤,m為整數(shù),m最大取43

答:最多可以買43個(gè)籃球.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明的數(shù)學(xué)作業(yè)本上都是等距的橫線,相鄰兩條橫線的距離都是1厘米,他把一個(gè)等腰直角三角板放ABC(∠ACB=90°,AC=BC)在本子上,點(diǎn)AB、C恰好都在橫線上,則斜邊AB的長(zhǎng)度為( 。

A.10B.3C.4D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,A、B、C三點(diǎn)的坐標(biāo)分別為(﹣2,4)、(﹣3,0)、(4,1).

1)畫出ABC;

2ABC的面積為   ;

3ABC向上平移3個(gè)單位長(zhǎng)度,向左平移1個(gè)單位長(zhǎng)度.請(qǐng)畫出圖形并寫出對(duì)應(yīng)點(diǎn)A1B1C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,且OE=OD,則AP的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】又到了一年中的春游季節(jié).某班學(xué)生利用周末去參觀“三軍會(huì)師紀(jì)念塔”.下面是兩位同學(xué)的一段對(duì)話:
甲:我站在此處看塔頂仰角為60°;
乙:我站在此處看塔頂仰角為30°;
甲:我們的身高都是1.6m;
乙:我們相距36m.
請(qǐng)你根據(jù)兩位同學(xué)的對(duì)話,計(jì)算紀(jì)念塔的高度.(精確到1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一圓錐形糧堆,其側(cè)面展開(kāi)圖是半徑為6m的半圓,糧堆母線AC的中點(diǎn)P處有一老鼠正在偷吃糧食,此時(shí),小貓正在B處,它要沿圓錐側(cè)面到達(dá)P處捕捉老鼠,則小貓所經(jīng)過(guò)的最短路程長(zhǎng)為( )

A.3m
B. m
C. m
D.4m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條高鐵線A,B,C三個(gè)車站的位置如圖所示.已知BC兩站之間相距530千米.高鐵列車從B站出發(fā),向C站方向勻速行駛,經(jīng)過(guò)13分鐘距A165千米;經(jīng)過(guò)80分鐘距A500千米.

1)求高鐵列車的速度和AB兩站之間的距離.(2)如果高鐵列車從A站出發(fā),開(kāi)出多久可以到達(dá)C站?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小數(shù)在數(shù)學(xué)外小組活動(dòng)中遇到這樣一個(gè)問(wèn)題:如果α、β都為銳角,且tanα= ,tanβ= .求α+β的度數(shù).

(1)小敏是這樣解決問(wèn)題的:如圖1,把α,β放在正方形網(wǎng)格中,使得∠ABD=α,∠CBE=β,且BA,BC在直線BD的兩側(cè),連接AC,可證得△ABC是等腰直角三角形,因此可求得α+β=∠ABC=°.
(2)請(qǐng)你參考小敏思考問(wèn)題的方法解決問(wèn)題:如果α,β都為銳角,當(dāng)tanα=4,tanβ= 時(shí),在圖2的正方形網(wǎng)格中,利用已作出的銳角α,畫出∠MON=α﹣β,由此可得α﹣β=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,AB為轉(zhuǎn)盤直徑,如圖所示,并規(guī)定:顧客消費(fèi)100元(含100元)以上,就能獲得一次轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)9折、8折、7折區(qū)域,顧客就可以獲得相應(yīng)的優(yōu)惠.

(1)某顧客正好消費(fèi)99元,是否可以獲得相應(yīng)的優(yōu)惠.

(2)某顧客正好消費(fèi)120元,他轉(zhuǎn)一次轉(zhuǎn)盤獲得三種打折優(yōu)惠的概率分別是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案