【題目】如圖,在△OAB中,頂點(diǎn)O(0,0),A(﹣3,4),B(3,4),將△OAB與正方形ABCD組成的圖形繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第2019次旋轉(zhuǎn)結(jié)束時(shí),點(diǎn)D的坐標(biāo)為( )
A.(3,﹣10)B.(10,3)C.(﹣10,﹣3)D.(10,﹣3)
【答案】C
【解析】
先求出AB=6,再利用正方形的性質(zhì)確定D(-3,10),由于2019=4×504+3,所以旋轉(zhuǎn)結(jié)束時(shí),相當(dāng)于△OAB與正方形ABCD組成的圖形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)3次,由此求出點(diǎn)D坐標(biāo)即可.
∵A(﹣3,4),B(3,4),
∴AB=3+3=6.
∵四邊形ABCD為正方形,
∴AD=AB=6,
∴D(﹣3,10).
∵2019=4×504+3,
∴每4次一個(gè)循環(huán),第2019次旋轉(zhuǎn)結(jié)束時(shí),相當(dāng)于△OAB與正方形ABCD組成的圖形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)3次,每次旋轉(zhuǎn),剛好旋轉(zhuǎn)到如圖O的位置.
∴點(diǎn)D的坐標(biāo)為(﹣10,﹣3).
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)分段函數(shù)的圖象與性質(zhì)進(jìn)行了探究,請(qǐng)補(bǔ)充完整以下的探究過程.
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 3 | 0 | -1 | 0 | 1 | 0 | -3 | … |
(1)填空:a= .b= .
(2)①根據(jù)上述表格數(shù)據(jù)補(bǔ)全函數(shù)圖象;
②該函數(shù)圖象是軸對(duì)稱圖形還是中心對(duì)稱圖形?
(3)若直線與該函數(shù)圖象有三個(gè)交點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形和擺放在一起,為公共頂點(diǎn),,它們的斜邊長(zhǎng)為2,若固定不動(dòng),繞點(diǎn)旋轉(zhuǎn),、與邊的交點(diǎn)分別為、(點(diǎn)不與點(diǎn)重合,點(diǎn)不與點(diǎn)重合),設(shè),.
(1)請(qǐng)?jiān)趫D(1)中找出兩對(duì)相似但不全等的三角形,并選取其中一對(duì)進(jìn)行證明.
(2)求與a的函數(shù)關(guān)系式,直接寫出自變量a的取值范圍.
(3)以的斜邊所在的直線為軸,邊上的高所在的直線為軸,建立平面直角坐標(biāo)系如圖(2),若,求出點(diǎn)的坐標(biāo),猜想線段、和之間的關(guān)系,并通過計(jì)算加以驗(yàn)證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),拋物線的對(duì)稱軸為直線,交拋物線于點(diǎn),交軸于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式及點(diǎn)、點(diǎn)的坐標(biāo);
(2)拋物線對(duì)稱軸上的一動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度向上運(yùn)動(dòng),連接,,設(shè)運(yùn)動(dòng)時(shí)間為秒(),在點(diǎn)的運(yùn)動(dòng)過程中,請(qǐng)求出:當(dāng)為何值時(shí),?
(3)若點(diǎn)在拋物線上、兩點(diǎn)之間運(yùn)動(dòng)(點(diǎn)不與點(diǎn)、重合),在運(yùn)動(dòng)過程中,設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求關(guān)于的函數(shù)關(guān)系式,并求為何值時(shí)有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù),下列結(jié)論中不正確的是( )
A.圖象必經(jīng)過點(diǎn) B.隨 的增大而增大
C.圖象在第二,四象限內(nèi)D.若,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D為邊AB上一點(diǎn),E是CD的中點(diǎn),且∠ACD=∠ABE.已知AC=2,設(shè)AB=x,AD=y,則y與x滿足的關(guān)系式為( 。
A.xy=4B.2xy﹣y2=4C.xy﹣y2=4D.x2+xy﹣2y2=4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),若三角形△PAB,△PBC,△PCD,△PDA均為等腰三角形,則稱點(diǎn)P是四邊形ABCD的一個(gè)“準(zhǔn)中心”,如,正方形的中心就是它的一個(gè)“準(zhǔn)中心”.
(1)如圖,已知點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),且∠PBC=∠PCB=60°,證明點(diǎn)P是正四邊形ABCD的一個(gè)“準(zhǔn)中心”;
(2)填空:正方形ABCD共有 個(gè)“準(zhǔn)中心”;
(3)已知∠BAD=60°,AB=AD=6,點(diǎn)C是∠BAD平分線上的動(dòng)點(diǎn),問在四邊形ABCD的對(duì)角線AC上最多存在幾個(gè)“準(zhǔn)中心”點(diǎn)P(自行畫出示意圖),并求出每個(gè)“準(zhǔn)中心”點(diǎn)P對(duì)應(yīng)線段AC的長(zhǎng)(精確到個(gè)位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點(diǎn)A為圓心,AB長(zhǎng)為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,射線AE與BC于F,過點(diǎn)F作FG⊥AC于G,則FG的長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com