【題目】如圖,已知PA、PB切⊙O于A,B兩點,連AB,且PA,PB的長是方程x2﹣2mx+3=0的兩根,AB=m.試求:
(1)⊙O的半徑;
(2)由PA,PB, 圍成圖形(即陰影部分)的面積.
【答案】
(1)解:連OA,OB,
∵PA=PB,
∴△=(﹣2m)2﹣4×3=0,
∴m2=3,m>0,
∴m= ,
∴x2﹣2 x+3=0,
∴x1=x2= ,
∴PA=PB=AB= ,
∴△ABP等邊三角形,
∴∠APB=60°,
∴∠APO=30°,
∵PA= ,
∴OA=1
(2)解:∵∠AOP=60°,
∴∠AOB=120°,
S陰=S四邊形OAPB﹣S扇形OAB
=2S△AOP﹣S扇形OAB
=2× ×1× ﹣ ,
= ﹣ π.
【解析】(1)由已知易證PA=PA,而PA、PB是一元二次方程的兩個根,可知一元二次方程由兩個相等的實數(shù)根,根據(jù)b2-4ac=0,建立方程,即可求出m的值,再證明△ABP等邊三角形,就可求出圓的半徑長。
(2)觀察圖形S陰=2S△AOP﹣S扇形OAB,分別求出△AOP和扇形OAB的面積即可。
【考點精析】掌握公式法和求根公式是解答本題的根本,需要知道要用公式解方程,首先化成一般式.調整系數(shù)隨其后,使其成為最簡比.確定參數(shù)abc,計算方程判別式.判別式值與零比,有無實根便得知.有實根可套公式,沒有實根要告之;根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,A、O、B在同一條直線上,∠AOE=∠COD,∠EOD=30°.
(1)若∠AOE=88°30′,求∠BOC的度數(shù);
(2)若射線OC平分∠EOB,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,D,E是邊AB上兩點,且CE所在直線垂直平分線段AD,CD平分∠BCE,AC=5cm,則BD的長為( )
A. 5cm B. 6cm C. 7cm D. 8cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三個生產日光燈管的廠家在廣告中宣稱,他們生產的日光燈管在正常情況下,燈管的使用壽命為12個月.工商部門為了檢查他們宣傳的真實性,從三個廠家各抽取11只日光燈管進行檢測,燈管的使用壽命(單位:月)如下:
(1)這三個廠家的廣告,分別利用了統(tǒng)計中的哪一個特征數(shù)(平均數(shù)、中位數(shù)、眾數(shù))進行宣傳?
(2)如果三個廠家產品的售價一樣,作為顧客的你選購哪個廠家的產品?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點,且AD∥CO.
(1)求證:△ABD≌△OBC;
(2)若AB=2,BC= ,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC 的頂點分別為 A(-2,2)、B(-4,5)、C(-5,1)和直線 m (直線 m 上各點的 橫坐標都為 1).
(1)作出△ABC 關于 x 軸對稱的圖形△A1B1C1,并寫出點 B1 的坐標;
(2)作出△ABC 關于 y 軸對稱的圖形△A2 B2C2,并寫出點 B2 的坐標;
(3)若點 P( a,b )是△ABC 內部一點,寫出點 P 關于直線 m 對稱的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形 ABCD 中,BC=CD,連接 AC、BD,∠ADB=90°.
(1)如圖 1,若 AD=BD=BC,過點 D 作 DF⊥AB 于點 F,交 AC 于點 E:
①求∠DAC;
②猜想 AE、DE、CE 的數(shù)量關系,并證明你的猜想;
(2)如圖 2,若 AC=BD,求∠DAC 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x=﹣3是關于x的方程(k+3)x+2=3x﹣2k的解.
(1)求k的值;
(2)在(1)的條件下,已知線段AB=6cm,點C是直線AB上一點,且BC=kAC,若點D是AC的中點,求線段CD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com