精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,DAC邊上的中點,連結BD,把△BDC′沿BD翻折,得到△DCAB交于點E,連結,若AD=AC′=2,BD=3則點DBC的距離為( )

A.B.C.D.

【答案】B

【解析】

連接CC′,交BD于點M,過點DDHBC于點H,由翻折知,BDC≌△BDC’,BD垂直平分CC,證ADC為等邊三角形,利用解直角三角形求出DM=1,CM= =,BM=2,在RtBMC'中,利用勾股定理求出BC′的長,在BDC中利用面積法求出DH的長.

解:如圖,連接CC′,交BD于點M,過點DDHBC′于點H,

AD=AC'=2,DAC邊上的中點,

DC=AD=2

由翻折知,BDCBDC′,BD垂直平分CC′,

DC=DC′=2BC=BC′,CM=C′M

AD=AC'=DC′=2,

ADC′為等邊三角形,

∴∠ADC=AC′D=C′AC=60°,

DC=DC′,

∴∠DCC′=DC′C= ×60°=30°

RtCDM中,∠DC′C=30°,DC′=2

DM=1,C′M=DM= ,

·.BM=BD-DM=3-1=2

RtBMC中,BC′=

.BM=BD-DM=3-1=2,

RtC'DM中,

故選B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+cx軸交于BC兩點,與y軸交于點A,直線y=﹣x+2經過AC兩點,拋物線的對稱軸與x軸交于點D,直線MN與對稱軸交于點G,與拋物線交于M,N兩點(點N在對稱軸右側),且MNx軸,MN7

1)求此拋物線的解析式.

2)求點N的坐標.

3)過點A的直線與拋物線交于點F,當tanFAC時,求點F的坐標.

4)過點D作直線AC的垂線,交AC于點H,交y軸于點K,連接CN,△AHK沿射線AC以每秒1個單位長度的速度移動,移動過程中△AHK與四邊形DGNC產生重疊,設重疊面積為S,移動時間為t0t),請直接寫出St的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線與坐標軸交于點,點和點,連接

1)求拋物線的解析式;

2)如圖,已知點在線段的上方(不包括點和點),過點作軸的垂線交直線于點,求線段的最大值;

3)該拋物線上是否存在點,使得?若存在,求點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,EF分別在邊AD,CD上,AFBE相交于點G,若AE=3ED,DF=CF,則的值是  

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,甲、乙只捕撈船同時從A港出海捕魚,甲船以每小時15 km的速度沿北偏西60°方向前進,乙船以每小時15 km的速度沿東北方向前進.甲船航行2 h到達C處,此時甲船發(fā)現漁具丟在了乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕乙船,結果兩船在B處相遇.問:

(1)甲船從C處出發(fā)追趕上乙船用了多少時間?

(2)甲船追趕乙船的速度是每小時多少千米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某新農村樂園設置了一個秋千場所,如圖所示,秋千拉繩OB的長為3m,靜止時,踏板到地面距離BD的長為0.6m(踏板厚度忽略不計).為安全起見,樂園管理處規(guī)定:兒童的安全高度hm,成人的安全高度2m(計算結果精確到0.1m

1)當擺繩OAOB45°夾角時,恰為兒童的安全高度,則h   m

2)某成人在玩秋千時,擺繩OCOB的最大夾角為55°,問此人是否安全?(參考數據:≈1.41sin55°≈0.82,cos55°≈0.57,tan55°≈1.43

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:


根據以上信息,整理分析數據如下:


1)寫出表格中的值;

2)綜合運用上表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績,若選派其中一名參賽,你認為應該選哪名隊員?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,為坐標原點,點(0,1),點(1,0),正方形的兩條對角線的交點為,延長至點,使.延長至點,使,以,為鄰邊做正方形

(Ⅰ)如圖①,求的長及的值;

(Ⅱ)如圖②,正方形固定,將正方形繞點逆時針旋轉,得正方形,記旋轉角為(0°<<360°),連接

旋轉過程中,當90°時,求的大;

②在旋轉過程中,求的長取最大值時,點的坐標及此時的大。ㄖ苯訉懗鼋Y果即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】黃金三角形就是一個等腰三角形,且其底與腰的長度比為黃金比值.如圖1,在黃金中,,點上的一動點,過點于點

當點是線段的中點時, ;當點是線段的三等分點時, ;

繞點逆時針旋轉到如圖2所示位置,連接,判斷的值是否變化,并給出證明;

繞點在平面內自由旋轉,若請直接寫出線段的長的取值范圍.

查看答案和解析>>

同步練習冊答案