【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸交于B,C兩點(diǎn),與y軸交于點(diǎn)A,直線y=﹣x+2經(jīng)過AC兩點(diǎn),拋物線的對稱軸與x軸交于點(diǎn)D,直線MN與對稱軸交于點(diǎn)G,與拋物線交于MN兩點(diǎn)(點(diǎn)N在對稱軸右側(cè)),且MNx軸,MN7

1)求此拋物線的解析式.

2)求點(diǎn)N的坐標(biāo).

3)過點(diǎn)A的直線與拋物線交于點(diǎn)F,當(dāng)tanFAC時(shí),求點(diǎn)F的坐標(biāo).

4)過點(diǎn)D作直線AC的垂線,交AC于點(diǎn)H,交y軸于點(diǎn)K,連接CN,△AHK沿射線AC以每秒1個(gè)單位長度的速度移動,移動過程中△AHK與四邊形DGNC產(chǎn)生重疊,設(shè)重疊面積為S,移動時(shí)間為t0t),請直接寫出St的函數(shù)關(guān)系式.

【答案】1y=﹣x2+x+2;(2)點(diǎn)N的坐標(biāo)為(5,-3);(3)點(diǎn)F的坐標(biāo)為:(3,2)或(,﹣);(4

【解析】

1)點(diǎn)AC的坐標(biāo)分別為(0,2)、(4,0),將點(diǎn)A、C坐標(biāo)代入拋物線表達(dá)式即可求解;

2)拋物線的對稱軸為:x,點(diǎn)N的橫坐標(biāo)為:,即可求解;

3)分點(diǎn)F在直線AC下方、點(diǎn)F在直線AC的上方兩種情況,分別求解即可;

4)分0t、當(dāng)tt三種情況,分別求解即可.

解:(1)直線y=﹣x+2經(jīng)過AC兩點(diǎn),則點(diǎn)AC的坐標(biāo)分別為(0,2)、(4,0),

c2,拋物線表達(dá)式為:y=﹣x2+bx+2,

將點(diǎn)C坐標(biāo)代入上式并解得:b

故拋物線的表達(dá)式為:y=﹣x2+x+2…①;

2)拋物線的對稱軸為:x,

點(diǎn)N的橫坐標(biāo)為: ,

故點(diǎn)N的坐標(biāo)為(5,-3);

3)∵tanACOtanFAC,

即∠ACO=∠FAC,

①當(dāng)點(diǎn)F在直線AC下方時(shí),

設(shè)直線AFx軸于點(diǎn)R,

∵∠ACO=∠FAC,則ARCR,

設(shè)點(diǎn)Rr,0),則r2+4=(r42,解得:r,

即點(diǎn)R的坐標(biāo)為:(0),

將點(diǎn)RA的坐標(biāo)代入一次函數(shù)表達(dá)式:ymx+n得:

解得:,

故直線AR的表達(dá)式為:y=﹣x+2…②,

聯(lián)立①②并解得:x,故點(diǎn)F,﹣);

②當(dāng)點(diǎn)F在直線AC的上方時(shí),

∵∠ACO=∠FAC,∴AF′∥x軸,

則點(diǎn)F′(3,2);

綜上,點(diǎn)F的坐標(biāo)為:(3,2)或(,﹣);

4)如圖2,設(shè)∠ACOα,則tanα,則sinα,cosα

①當(dāng)0t時(shí)(左側(cè)圖),

設(shè)△AHK移動到△AHK′的位置時(shí),直線HK′分別交x軸于點(diǎn)T、交拋物線對稱軸于點(diǎn)S

則∠DST=∠ACOα,過點(diǎn)TTLKH,

LTHH′=t,∠LTD=∠ACOα,

DT,DS,

SSDSTDT×DS;

②當(dāng)t時(shí)(右側(cè)圖),

同理可得:

SDG×(GS′+DT′)=3+(+)=;

③當(dāng)t時(shí),同理可得S=;

綜上,S

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軒從如圖所示的二次函數(shù)y=ax2+bx+ca≠0)的圖象中,觀察得出了下面五條信息:

ab0;a+b+c0b+2c0;a﹣2b+4c0

你認(rèn)為其中正確信息的個(gè)數(shù)有

A2個(gè) B3個(gè) C4個(gè) D5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是等邊三角形內(nèi)一點(diǎn),且,,,若將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到,則的度數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,BC=3,動點(diǎn)出發(fā),以每秒1個(gè)單位的速度,沿射線方向移動,作關(guān)于直線的對稱,設(shè)點(diǎn)的運(yùn)動時(shí)間為

1)若

①如圖2,當(dāng)點(diǎn)B’落在AC上時(shí),顯然PCB’是直角三角形,求此時(shí)t的值

②是否存在異于圖2的時(shí)刻,使得PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由

2)當(dāng)P點(diǎn)不與C點(diǎn)重合時(shí),若直線PB’與直線CD相交于點(diǎn)M,且當(dāng)t3時(shí)存在某一時(shí)刻有結(jié)論∠PAM=45°成立,試探究:對于t3的任意時(shí)刻,結(jié)論∠PAM=45°是否總是成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=80°,BAC=40°.

(1)尺規(guī)作圖作出AB的垂直平分線DE,分別與AC、AB交于點(diǎn)D、E.并連結(jié)BD;(保留作圖痕跡,不寫作法)

(2)證明:ABC∽△BDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線ymx交于點(diǎn)C,直線ly4分別交兩函數(shù)圖象于點(diǎn)A14)和點(diǎn)B,過點(diǎn)BBDl交反比例函數(shù)圖象于點(diǎn) D

1)求反比例函數(shù)的解析式;

2)當(dāng)BD2AB時(shí),求點(diǎn)B的坐標(biāo);

3)在(2)的條件下,直接寫出不等式mx的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解九年級的600名學(xué)生每天的自主學(xué)習(xí)情況,隨機(jī)抽查了九年級的部分學(xué)生,并調(diào)查他們每天自主學(xué)習(xí)的時(shí)間.根據(jù)調(diào)查結(jié)果,制作了兩副不完整的統(tǒng)計(jì)圖(圖12),請根據(jù)統(tǒng)計(jì)圖中的信息回答下列問題:

1)本次調(diào)查的學(xué)生人數(shù)是 人;

2)圖2中角 度;

3)將圖1條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)估算該校九年級學(xué)生自主學(xué)習(xí)不少于1.5小時(shí)有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表記錄了甲、乙、丙、丁四名同學(xué)最近幾次數(shù)學(xué)考試成績的平均數(shù)與方差.根據(jù)表中數(shù)據(jù),要從中選擇一名成績好且發(fā)揮穩(wěn)定的同學(xué)參加數(shù)學(xué)競賽,應(yīng)該選擇__________(填, , , ).

平均數(shù)(分)

92

95

95

92

方差

3.6

3.6

7.4

8.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAC邊上的中點(diǎn),連結(jié)BD,把△BDC′沿BD翻折,得到△,DCAB交于點(diǎn)E,連結(jié),若AD=AC′=2,BD=3則點(diǎn)DBC的距離為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案