7.已知|a|=7,|b|=3,a-b>0  求a+b=10或4.

分析 根據(jù)題意,利用絕對值的代數(shù)意義求出a與b的值,代入原式計算即可得到結(jié)果.

解答 解:∵|a|=7,|b|=3,a-b>0,
∴a=7,b=3;a=7,b=-3,
則a+b=10或4,
故答案為:10或4

點評 此題考查了有理數(shù)的加減法,以及絕對值,熟練掌握運算法則及絕對值的代數(shù)意義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

17.如圖,AB∥DE,∠α:∠D:∠B=2:3:4,求∠α.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

18.已知A,B,C是直線l上三點,線段AB=6cm,且AB=$\frac{1}{2}$AC,則BC=( 。
A.6cmB.12cmC.18cmD.6cm或18cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.吳老師在與同學們進行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下問題,請你根據(jù)下列所給的條件分別求出螞蟻需要爬行的最短路程的長.
(1)如圖1,正方體的棱長為5cm,一只螞蟻欲從正方體底面上的點A沿正方體表面爬到點C1處;
(2)如圖2,長方體底面是邊長為5cm的正方形,高為6cm,一只螞蟻欲從長方體底面上的點A沿長方體表面爬到點C1處.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.如圖,在平面直角坐標系中,等邊△OAB的頂點O為坐標原點,B點坐標為(4,0),且△OAB的面積為4$\sqrt{3}$.點P從A點出發(fā)沿著射線AB運動,點Q從B點出發(fā)沿X軸正半軸運動,點P、點Q同時出發(fā),速度均為每秒2個單位長度,運動時間為x秒,過點P作PH⊥X軸于點H,設(shè)HQ的長度為y個單位長度.
(1)求A點的坐標;
(2)當點P在線段AB上運動時,取BQ的中點M,求HM的長度;
(3)在點P、點Q的運動過程中,當∠PQB=30°時,求點P、點Q運動時間x的值,并直接寫出此時H點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.如圖,△ABC內(nèi)接于⊙O,直徑AF平分∠BAC,交BC于點D.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長BA到點E,連接ED、EC,ED交AC于點G,且ED=EC,求證:∠EGC=∠ECA+2∠ACB;
(3)如圖3,在(2)的條件下,當BC是⊙O的直徑時,取DC的中點M,連接AM并延長交圓于點N,且EG=5,連接CN并求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.如圖,點P在射線AB的上方,且∠PAB=45°,PA=2,點M是射線AB上的動點(點M不與點A重合),現(xiàn)將點P繞點A按順時針方向旋轉(zhuǎn)60°,到點Q,將點M繞點P按逆時針方向旋轉(zhuǎn)60°到點N,連結(jié)AQ,PM,PN,作直線QN.
(1)求證:AM=QN;
(2)直線QN與以點P為圓心,以PN的長為半徑的圓是否存在相切的情況?若存在,請求出此時AM的長,若不存在,請說明理由;
(3)當以點P為圓心,以PN的長為半徑的圓經(jīng)過點Q時,直接寫出劣弧NQ與兩條半徑所圍成的扇形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

16.下列式子正確的是( 。
A.a-2(-b+c)=a+2b-2cB.|-a|=-|a|C.a3+a3=2a6D.6x2-2x2=4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.如圖,在坐標系中,△ABC三頂點坐標為A(-2,0),B(-2,4),C(-4,1),將△ABC繞著P點順時針旋轉(zhuǎn)90°后得到△A1B1C1,其中A點對應(yīng)點A1的坐標為(1,3),C點對應(yīng)點C1的坐標為(2,5).
(1)旋轉(zhuǎn)中心P的坐標為(1,0),并在坐標系中標出點P;
(2)B點的對應(yīng)點B1的坐標是(5,3),并在坐標系中畫出△A1B1C1
(3)在坐標系中畫出△A2B2C2,使△A2B2C2∽△ABC,且相似比是2.

查看答案和解析>>

同步練習冊答案