分析 根據(jù)余角的定義得出∠A=∠F,再根據(jù)ASA證明△FDB和△BAC全等,最后根據(jù)全等三角形的性質(zhì)證明即可.
解答 證明:∵∠ABC=90°,
∴∠DBF=90°,
∴∠DBF=∠ABC,
∵EF⊥AC,
∴∠AED=∠DBF=90°,
∵∠ADE=∠BDF
∴∠A=∠F,
在△FDB和△ACB中,
$\left\{\begin{array}{l}{∠A=∠F}\\{AB=BF}\\{∠ABC=∠FBD}\end{array}\right.$,
∴△ABC≌△FBD(ASA),
∴DB=BC.
點評 此題考查全等三角形的判定和性質(zhì),關(guān)鍵是利用互余得出∠D=∠B,再根據(jù)ASA證明三角形全等.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com