【題目】如圖,在△ABC中,已知點DE,F分別為BCAD,AE的中點,且SABC12cm2,則陰影部分面積S=(  )cm2

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)三角形面積公式由點DBC的中點得到SABDSADCSABC6,同理得到SEBDSEDCSABD3,則SBEC6,然后再由點FEC的中點得到SBEFSBEC3

解:∵點DBC的中點,

SABDSADCSABC6,

∵點EAD的中點,

SEBDSEDCSABD3,

SEBCSEBD+SEDC6,

∵點FEC的中點,

SBEFSBEC3,

即陰影部分的面積為3cm2

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是兩個全等的等邊三角形,,下列結論不正確的是(

A.B.直線垂直平分

C.D.四邊形是軸對稱圖形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A、B兩個村莊的坐標分別為(22),(74),一輛汽車(看成點P)在軸上行駛.試確定下列情況下汽車(點P)的位置:

1)求直線AB的解析式,且確定汽車行駛到什么點時到A、B兩村距離之差最大?

2)汽車行駛到什么點時,到A、B兩村距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一位護士統(tǒng)計一位病人的體溫變化圖,請根據(jù)統(tǒng)計圖回答下列問題:

1)病人的最高體溫是達多少? 

2)什么時間體溫升得最快? 

3)如果你是護士,你想對病人說____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=x2+bx+cx軸交于A(-1,0)、B兩點(AB左),y軸交于點C0-3).

1)求拋物線的解析式;

2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;

3)若點Ex軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在ABC中,BF、CF是角平分線,DEBC,分別交AB、AC于點D、E,DE經(jīng)過點F.結論:①△BDFCEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長=AB+ACBF=CF.其中正確的是______(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,在平行四邊形紙片ABCD中,AD=5,SABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE'的位置,拼成四邊形AEE'D,判斷四邊形AEE'D的形狀;

(2)如圖②,在(1)中的四邊形紙片AEE'D中,在EE'上取一點F,使EF=4,剪下△AEF,將它平移至△DE'F'的位置,拼成四邊形AFF'D.

①求證:四邊形AFF'D是菱形;

②求四邊形AFF'D的兩條對角線的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.

(1)用樹狀圖或列表等方法列出所有可能出現(xiàn)的結果;

(2)求兩次摸到的球的顏色不同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】腰長為4的等腰直角放在如圖所示的平面直角坐標系中,點A、C均在y軸上,C(0,2),∠ACB=90,AC=BC=4,平行于y軸的直線x=-2交線段AB于點D,點P是直線x=-2上一動點,且在點D的上方,當時,以PB為直角邊作等腰直角,則所有符合條件的點M的坐標為________

查看答案和解析>>

同步練習冊答案