【題目】已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(diǎn)(A在B左),y軸交于點(diǎn)C(0,-3).
(1)求拋物線的解析式;
(2)若點(diǎn)D是線段BC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以B、C、E、P為頂點(diǎn)且以BC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2);(3)P1(3,-3),P2(,3),P3(,3).
【解析】試題分析:(1)將的坐標(biāo)代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式.
(2)根據(jù)的坐標(biāo),易求得直線的解析式.由于都是定值,則 的面積不變,若四邊形面積最大,則的面積最大;過點(diǎn)作軸交于,則 可得到當(dāng)面積有最大值時(shí),四邊形的面積最大值.
(3)本題應(yīng)分情況討論:①過作軸的平行線,與拋物線的交點(diǎn)符合點(diǎn)的要求,此時(shí)的縱坐標(biāo)相同,代入拋物線的解析式中即可求出點(diǎn)坐標(biāo);②將平移,令點(diǎn)落在軸(即點(diǎn))、點(diǎn)落在拋物線(即點(diǎn))上;可根據(jù)平行四邊形的性質(zhì),得出點(diǎn)縱坐標(biāo)(縱坐標(biāo)的絕對(duì)值相等),代入拋物線的解析式中即可求得點(diǎn)坐標(biāo).
試題解析:(1)把代入,
可以求得
∴
(2)過點(diǎn)作軸分別交線段和軸于點(diǎn),
在中,令,得
設(shè)直線的解析式為
可求得直線的解析式為:
∵S四邊形ABCD
設(shè)
當(dāng)時(shí), 有最大值
此時(shí)四邊形ABCD面積有最大值
(3)如圖所示,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形ABC的三邊長(zhǎng)分別為6 cm、7.5 cm、9 cm,三角形DEF的一邊長(zhǎng)為4 cm.當(dāng)三角形DEF的另兩邊長(zhǎng)是下列哪一組時(shí),這兩個(gè)三角形相似( )
A. 2 cm、3 cm B. 4 cm、5 cm C. 5 cm、6 cm D. 6 cm、7 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,如果AC=12、BD=10、AB=m,那么m的取值范圍是( )
A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,1),B(﹣1,1),C(﹣1,﹣3),D(2,﹣3),點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿A﹣B﹣C﹣D﹣A…的規(guī)律在圖邊形ABCD的邊上循環(huán)運(yùn)動(dòng),則第2019秒時(shí)點(diǎn)P的坐標(biāo)為( )
A. (1,1)B. (0,1)C. (﹣1,1)D. (2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年我市的臍橙喜獲豐收,臍橙一上市,水果店的陳老板用2400元購進(jìn)一批臍橙,很快售完;陳老板又用6000元購進(jìn)第二批臍橙,所購件數(shù)是第一批的2倍,但進(jìn)價(jià)比第一批每件多了20元.
(1)第一批臍橙每件進(jìn)價(jià)多少元?
(2)陳老板以每件120元的價(jià)格銷售第二批臍橙,售出60%后,為了盡快售完,決定打折促銷,要使第二批臍橙的銷售總利潤不少于480元,剩余的臍橙每件售價(jià)最低打幾折?(利潤=售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB,作圖.
步驟1:在OB上任取一點(diǎn)M,以點(diǎn)M為圓心,MO長(zhǎng)為半徑畫半圓,分別交OA、OB于點(diǎn)P、Q;
步驟2:過點(diǎn)M作PQ的垂線交弧PQ 于點(diǎn)C;
步驟3:畫射線OC.
則下列判斷:①弧CQ=弧PC;②MC∥OA;③OP=PQ;④OC平分∠AOB,
其中正確的為_______________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:將一個(gè)邊長(zhǎng)為n(n≥2)的正三角形的三條邊n等分,連接各邊對(duì)應(yīng)的等分點(diǎn), 則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少呢?
問題探究:要研究上面的問題,我們不妨先從特例入手,進(jìn)而找到一般規(guī)律
探究一:將一個(gè)邊長(zhǎng)為2的正三角形的三條邊平分,連接各邊中點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?
如圖1,連接邊長(zhǎng)為2的正三角形三條邊的中點(diǎn),從上往下:共有1+2+3=6個(gè)結(jié)點(diǎn).邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有2個(gè),共有1+2=3個(gè),線段數(shù)為3×3=9條;邊長(zhǎng)為2的正三角形有1個(gè),線段數(shù)為3條,總共有3×(1+2+1)=2×(1+2+3)=12條線段.
探究二:將一個(gè)邊長(zhǎng)為3的正三角形的三條邊三等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?
如圖2,連接邊長(zhǎng)為3的正三角形三條邊的對(duì)應(yīng)三等分點(diǎn),從上往下:共有1+2+3+4=10個(gè)結(jié)點(diǎn).邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有2個(gè),第三層有3個(gè),共有1+2+3=6個(gè),線段數(shù)為3×6=18條;邊長(zhǎng)為2的正三角形有1+2=3個(gè),線段數(shù)為3×3=9條,邊長(zhǎng)為3的正三角形有1個(gè),線段數(shù)為3條,總共有3×(1+2+3+1+2+1)=3×(1+2+3+4)=30條線段.
探究三:
請(qǐng)你仿照上面的方法,探究將邊長(zhǎng)為4的正三角形的三條邊四等分(圖3),連接各邊對(duì)應(yīng)的等分點(diǎn),該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?
(畫出示意圖,并寫出探究過程)
問題解決:
請(qǐng)你仿照上面的方法,探究將一個(gè)邊長(zhǎng)為n(n≥2)的正三角形的三條邊n等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?(寫出探究過程)
實(shí)際應(yīng)用:
將一個(gè)邊長(zhǎng)為30的正三角形的三條邊三十等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的周長(zhǎng)為20,對(duì)角線AC長(zhǎng)為,點(diǎn)E、F分別為AC、BC邊上的動(dòng)點(diǎn).
(1)直接寫出菱形ABCD的面積:_______;
(2)直接寫出BE+EF的最小值_______;并在圖中作出此時(shí)的點(diǎn)E和點(diǎn)F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)B(2,0),與函數(shù)y=2x的圖象交于點(diǎn)A,則不等式0<kx+b<2x的解集為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com