【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C分別在坐標(biāo)軸上,頂點(diǎn)B的坐標(biāo)為(4,2),過點(diǎn)D(0,3)和E(6,0)的直線分別與AB,BC交于點(diǎn)M,N.

(1)求直線DE的解析式和點(diǎn)M的坐標(biāo);

(2)若反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)M,在該反比例函數(shù)的圖象上是否存在一點(diǎn)P,使PMN的面積等于OMN的面積的一半,若存在,求點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

(3)若反比例函數(shù)y=(x>0)的圖象與MNB有公共點(diǎn),請(qǐng)直接寫出m的取值范圍.

【答案】(1)(2,2);(2)(1,4)或(8,);(3)4≤k≤8.

【解析】

對(duì)于(1)直接將點(diǎn)D,E坐標(biāo)代入y=kx+b求出解析式,再將點(diǎn)M的縱坐標(biāo)代入解析式可得答案;

對(duì)于(2),將點(diǎn)M坐標(biāo)代入反比例函數(shù)關(guān)系式,求出m值,再根據(jù)已知條件轉(zhuǎn)化面積求出相關(guān)線段長度,進(jìn)而解答

對(duì)于(3),先求出當(dāng)反比例函數(shù)圖象經(jīng)過點(diǎn)M,B時(shí)m的值,進(jìn)而得出范圍.

解:(1)設(shè)直線DE的解析式是y=kx+b,

根據(jù)題意得:,

解得:,

則直線DE的解析式是:y=﹣x+3,

y=2,得到2=﹣x+3,解得:x=2,則M的坐標(biāo)是(2,2);

(2)把M(2,2)代入y=得;k=4,

則反比例函數(shù)的解析式是:y=,

當(dāng)x=4時(shí),y=﹣+3=1,則N(4,1),

MN==,

OMN的面積S=S矩形OABC﹣SOAM﹣SBMN﹣SOCN=2×4﹣=8﹣2﹣1﹣2=3,

SPMN=SOMN,

=

=3,

PG=

存在點(diǎn)P,設(shè)P(x,),過PPGMNG,作PHx軸于H,交直線DEF,

∵∠PGF=DAM=90°,

∴∠GPF=DMA,

∴△PGF∽△MAD,

,

,

x=18,

P的坐標(biāo)為:(1,4)或(8,);

(3)經(jīng)過M的反比例函數(shù)的解析式是:y=,同時(shí)經(jīng)過點(diǎn)N,

經(jīng)過點(diǎn)B的反比例函數(shù)的解析式是:y=,

則反比例函數(shù)y=(x>0)的圖象與MNB有公共點(diǎn)時(shí),k的范圍是:4≤k≤8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)分別在軸,軸正半軸上.

1的平分線與的外角平分線交于點(diǎn),求的度數(shù);

2)設(shè)點(diǎn),的坐標(biāo)分別為,,且滿足,求的面積;

3)在(2)的條件下,當(dāng)是以為斜邊的等腰直角三角形時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù) y=kx+2(k<0)的圖象經(jīng)過點(diǎn) C(3,0),且反比例函數(shù) y= 的圖象與該一次函數(shù)的圖象交于第二、四象限內(nèi)的 A,B 兩點(diǎn).

(1)求該一次函數(shù)的解析式;

(2) AC=2BC,求 m 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形ABC的底邊長BC=20cm,DAC上的一點(diǎn),且BD=16cm,CD=12cm

1)求證:BDAC

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上老師提出了如下問題:

尺規(guī)作圖:作邊上的高線

已知:

求作:邊上的高線

下面是小東設(shè)計(jì)的“作邊上的高線”的尺規(guī)作圖過程.

作法:如圖,

①以點(diǎn)為圓心,的長為半徑作弧,以點(diǎn)為圓心,的長為半徑作弧,兩弧在下方交于點(diǎn);

②連接于點(diǎn)

所以線段邊上的高線.

根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)小樂和小馬幫助小東完成下面的證明.

小樂:證明:,

點(diǎn),分別在線段的垂直平分線上(依據(jù)1).

垂直平分線段

線段邊上的高線.

小樂:證明:,,

(依據(jù)2

∴線段邊上的高線

上述證明過程中的“依據(jù)1”和“依據(jù)2”分別指什么?

3)請(qǐng)你用不同于小東的方法完成老師提出的問題.

4)若,,,則邊上的高的長度為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y=(m≠0)的圖象在第一象限交于點(diǎn)C,ABC是邊長為3的等邊三角形,且AB邊在x軸額正半軸上,cos∠COA=

(1)求k,m的值;

(2)點(diǎn)P在射線OC上,且OP=5,動(dòng)點(diǎn)Q從點(diǎn)P出發(fā)先沿著適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到線段AB中垂線上的點(diǎn)M處,再沿垂直于y軸的方向運(yùn)動(dòng)到y(tǒng)軸上的點(diǎn)N處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)A處停止,當(dāng)點(diǎn)Q的運(yùn)動(dòng)路徑最短時(shí),求N點(diǎn)坐標(biāo)及點(diǎn)Q運(yùn)動(dòng)的最短路程;

(3)將ABC繞點(diǎn)A進(jìn)行旋轉(zhuǎn),在旋轉(zhuǎn)過程中,設(shè)BC所在直線與射線OC相交于點(diǎn)R,與x軸正半軸交于點(diǎn)T,當(dāng)ORT為等腰三角形時(shí),求OT的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,B=30°BC=3.點(diǎn)DBC邊上的一動(dòng)點(diǎn)(不與點(diǎn)BC重合),過點(diǎn)DDEBCAB于點(diǎn)E,將∠B沿直線DE翻折,點(diǎn)B落在射線BC上的點(diǎn)F處.當(dāng)AEF為直角三角形時(shí),BD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為某街心公園的平面圖,經(jīng)測(cè)量米,米,且

1)求的度數(shù);

2)若為公園的車輛進(jìn)出口道路(道路的寬度忽略不計(jì)),工作人員想要在點(diǎn)處安裝一個(gè)監(jiān)控裝置來監(jiān)控道路的車輛通行情況,已知攝像頭能監(jiān)控的最大范圍為周圍的100米(包含100米),求被監(jiān)控到的道路長度為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,直線 EF 分別交 ABCD于 點(diǎn) E、FEG 平分∠AEF,

1)求證:EGF 是等腰三角形.

2)若∠1=40°,求∠2 的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案