二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一平面直角坐標(biāo)系中的大致圖象為【   】
 
A.B.C.D.
B。
∵二次函數(shù)圖象開口向上,∴a>0,
∵對稱軸為直線,∴b<0。
∵與y軸的正半軸相交,∴c>0。
的圖象經(jīng)過第一、三、四象限;反比例函數(shù)圖象在第一、三象限,只有B選項圖象符合。故選B。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象以為頂點,且過點
(1)求該二次函數(shù)的解析式;
(2)求該二次函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點O是原點,矩形OABC的頂點A在x軸的正半軸上,頂點C在y的正半軸上,點B的坐標(biāo)是(5,3),拋物線經(jīng)過A、C兩點,與x軸的另一個交點是點D,連接BD.

(1)求拋物線的解析式;
(2)點M是拋物線對稱軸上的一點,以M、B、D為頂點的三角形的面積是6,求點M的坐標(biāo);
(3)點P從點D出發(fā),以每秒1個單位長度的速度沿D→B勻速運動,同時點Q從點B出發(fā),以每秒1個單位長度的速度沿B→A→D勻速運動,當(dāng)點P到達(dá)點B時,P、Q同時停止運動,設(shè)運動的時間為t秒,當(dāng)t為何值時,以D、P、Q為頂點的三角形是等腰三角形?請直接寫出所有符合條件的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時,第1條拋物線與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標(biāo)為(       ,       );
依此類推第n條拋物線yn的頂點坐標(biāo)為(       ,       );
所有拋物線的頂點坐標(biāo)滿足的函數(shù)關(guān)系是       ;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,平面之間坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標(biāo)及k的值:A     ,k=     ;
(2)隨著三角板的滑動,當(dāng)a=時:
①請你驗證:拋物線的頂點在函數(shù)的圖象上;
②當(dāng)三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角體系中,直線AB交x軸于點A(5,0),交y軸于點B,AO是⊙M的直徑,其半圓交AB于點C,且AC=3。取BO的中點D,連接CD、MD和OC。

(1)求證:CD是⊙M的切線;
(2)二次函數(shù)的圖象經(jīng)過點D、M、A,其對稱軸上有一動點P,連接PD、PM,求△PDM的周長最小時點P的坐標(biāo);
(3)在(2)的條件下,當(dāng)△PDM的周長最小時,拋物線上是否存在點Q,使?若存在,求出點Q的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,BC=3,AB=5.點P從點B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運動;點Q從點C出發(fā),以每秒2個單位沿C→A→B方向的運動,到達(dá)點B后立即原速返回,若P、Q兩點同時運動,相遇后同時停止,設(shè)運動時間為t秒.

(1)當(dāng)t=     時,點P與點Q相遇;
(2)在點P從點B到點C的運動過程中,當(dāng)ι為何值時,△PCQ為等腰三角形?
(3)在點Q從點B返回點A的運動過程中,設(shè)△PCQ的面積為s平方單位.
①求s與ι之間的函數(shù)關(guān)系式;
②當(dāng)s最大時,過點P作直線交AB于點D,將△ABC中沿直線PD折疊,使點A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是二次函數(shù)圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點,則
y1>y2.其中說法正確的是【   】
A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=﹣x2平移后的位置如圖所示,點A,B坐標(biāo)分別為(﹣1,0)、(3,0),設(shè)平移后的拋物線與y軸交于點C,其頂點為D.

(1)求平移后的拋物線的解析式和點D的坐標(biāo);
(2)∠ACB和∠ABD是否相等?請證明你的結(jié)論;
(3)點P在平移后的拋物線的對稱軸上,且△CDP與△ABC相似,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案