【題目】若拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于正半軸C點(diǎn),且AC=20,BC=15,∠ACB=90°,則此拋物線的解析式為

【答案】y=﹣ ?x2+ ?x+12或y=﹣ ?x2 ?x+12
【解析】解:如圖,∵∠ACB=90°,AC=20,BC=15,∴AB= =25,
OCAB= ACBC,
∴OC= =12,
∴OA= =9,
∴OB=25﹣9=16,
∴拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣9,0)、(16,0)或(﹣16,0)、(9,0),
當(dāng)拋物線過點(diǎn)(﹣9,0)、(16,0)時,設(shè)拋物線解析式為y=a(x+9)(x﹣16),把C(0,12)代入得a9(﹣16)=12,解得a=﹣ ,此時拋物線解析式為y=﹣ (x+9)(x﹣16),
即y=﹣ x2+ x+12;
當(dāng)拋物線過點(diǎn)(﹣16,0)、(9,0)時,設(shè)拋物線解析式為y=a(x+16)(x﹣9),把C(0,12)代入得a16(﹣9)=12,解得a=﹣ ,此時拋物線解析式為y=﹣ (x+16)(x﹣9),
即y=﹣ x2 x+12
綜上所述,拋物線解析式為y=﹣ x2+ x+12或y=﹣ x2 x+12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC= +1,點(diǎn)M,N分別是邊BC,AB上的動點(diǎn),沿MN所在的直線折疊∠B,使點(diǎn)B的對應(yīng)點(diǎn)B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,已知點(diǎn)A(0,1),點(diǎn)P在線段OA上,以AP為半徑的⊙P周長為1,點(diǎn)M從A開始沿⊙P按逆時針方向轉(zhuǎn)動,射線AM交x軸于點(diǎn)N(n,0).設(shè)點(diǎn)M轉(zhuǎn)過的路程為m(0<m<1),隨著點(diǎn)M的轉(zhuǎn)動,當(dāng)m從 變化到 時,點(diǎn)N相應(yīng)移動的路經(jīng)長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角∠DAG=α,其中0°≤α≤180°,連結(jié)DF,BF,如圖.
(1)若α=0°,則DF=BF,請加以證明;
(2)試畫一個圖形(即反例),說明(1)中命題的逆命題是假命題;
(3)對于(1)中命題的逆命題,如果能補(bǔ)充一個條件后能使該逆命題為真命題,請直接寫出你認(rèn)為需要補(bǔ)充的一個條件,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=ax2+bx+c(a≠0),有下列四個結(jié)論:①abc>0;②4a+2b+c>0;③3a+c<0;④a+b≥m(am+b),其中正確的有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關(guān)信息如下表:

時間x(天)

1≤x<50

50≤x≤90

售價(元/件)

x+40

90

每天銷量(件)

200﹣2x

已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品的每天利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0)、C(0,﹣3).

(1)求拋物線的解析式.
(2)若點(diǎn)D是線段AC下方拋物線上的動點(diǎn),求四邊形ABCD面積的最大值.
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上,是否存在以A、C、E、P為頂點(diǎn)且以AC為一邊的平行四邊形?如存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是⊙O直徑BD延長線上的一點(diǎn),C在⊙O上,AC=BC,AD=CD

(1)求證:AC是⊙O的切線;
(2)若⊙O的半徑為4,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣ x+1和拋物線y=x2+bx+c都經(jīng)過點(diǎn)A(2,0)和點(diǎn)B(k,

(1)k的值是;
(2)求拋物線的解析式;
(3)不等式x2+bx+c>﹣ x+1的解集是

查看答案和解析>>

同步練習(xí)冊答案