【題目】問題背景:

小紅同學(xué)在學(xué)習(xí)過程中遇到這樣一道計算題“計算”,他覺得太麻煩,估計應(yīng)該有可以簡化計算的方法,就去請教崔老師.崔老師說:你完成下面的問題后就可能知道該如何簡化計算啦!

獲取新知:

請你和小紅一起完成崔老師提供的問題:

1)填寫下表:

2)觀察表格,你發(fā)現(xiàn)有什么數(shù)量關(guān)系?請直接寫出之間的數(shù)量關(guān)系.

解決問題:

3)請結(jié)合上述的有關(guān)信息,計算

【答案】116,149;(2BA2;(39

【解析】

1)分別將,代入計算即可;

2)由,可判斷AB的數(shù)量關(guān)系;

3符合的形式,因此運用(2)中的結(jié)論即可得出答案.

1)當(dāng)時,,

當(dāng)時,

當(dāng)時,

故答案為:16,149;

2)由表格數(shù)據(jù)可看出,,,,

BA2;

34×3.1424×3.14×3.28+3.282(2×3.143.28)29

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算與化簡

1)(﹣2x3x6÷(﹣3x32

25mmn)﹣(5m+n)(mn

3)利用簡便方法計算:202022019×2021

4)先化簡,再求值:[a+b2﹣(ab)(a+b2b),其中a=﹣b=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是菱形ABCD的對角線,∠CBD=75°,

(1)請用尺規(guī)作圖法,作AB的垂直平分線EF,垂足為E,交ADF;(不要求寫作法,保留作圖痕跡)

(2)在(1)條件下,連接BF,求∠DBF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC中,AB=AC,點D是斜邊BC的中點,點E、F分別是ABAC邊上的點,且DEDF.

1)證明:BE+CF=EF2

2)若BE=12,CF=5,求DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)完《有理數(shù)》后,小奇對運算產(chǎn)生了濃厚的興趣.借助有理數(shù)的運算,定義了一種新運算,規(guī)則如下:aba×b+2×a

1)求2⊕(﹣1)的值;

2)求﹣3⊕(﹣4)的值;

3)試用學(xué)習(xí)有理數(shù)的經(jīng)驗和方法來探究這種新運算是否具有交換律?請寫出你的探究過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊△AB1C1;再以等邊△AB1C1B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊△AB2C2;再以等邊△AB2C2B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊△AB3C3;…,記△B1CB2的面積為S1,B2C1B3的面積為S2,B3C2B4的面積為S3,如此下去,則Sn=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需170元,購買2個足球和5個籃球共需260元.

1)購買一個足球、一個籃球各需多少元?(提示:列方程組解答)

2)根據(jù)該中學(xué)的實際情況,需一次性購買足球和籃球共46個,要求購買足球和籃球的總費用不超過1480元,這所中學(xué)最多可以購買多少個籃球?(提示:列不等式解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一個長方形的紙片制作一個無蓋的長方體盒子,設(shè)這個長方形的長為a,寬為b,這個無蓋的長方體盒子高為c,只考慮如圖所示,在長方形的右邊兩個角上各剪去一個大小相同的正方形,左上角剪去一個長方形的情況,則這個無蓋長方體盒子的容積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是一枚質(zhì)地均勻的正四面體形狀的骰子,每個面上分別標(biāo)有數(shù)字1,2,3,4,圖②是一個正六邊形棋盤,現(xiàn)通過擲骰子的方式玩跳棋游戲,規(guī)則是:將這枚骰子擲出后,看骰子向上三個面(除底面外)的數(shù)字之和是幾,就從圖②中的A點開始沿著順時針方向連續(xù)跳動幾個頂點,第二次從第一次的終點處開始,按第一次的方法跳動.

(1)隨機擲一次骰子,則棋子跳動到點C處的概率是   

(2)隨機擲兩次骰子,用畫樹狀圖或列表的方法,求棋子最終跳動到點C處的概率.

查看答案和解析>>

同步練習(xí)冊答案