【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊△AB1C1;再以等邊△AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊△AB2C2;再以等邊△AB2C2的B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊△AB3C3;…,記△B1CB2的面積為S1,△B2C1B3的面積為S2,△B3C2B4的面積為S3,如此下去,則Sn=_____.
【答案】
【解析】由AB1是邊長為2的等邊三角形ABC的高,利用三線合一得到B1為BC的中點,求出CB1的長,繼而可得△B1CB2是有一個角為30度的直角三角形,同理可知△B2C1B3、△B3C2B4、△B4C3B5、…、都是有一個角為30度的直角三角形,而且后一個的斜邊是前一個30度角所鄰的直角邊,由此即可求得Sn.
∵等邊三角形ABC的邊長為2,AB1⊥BC,
∴∠C=60°,CB1=BB1=1,
又∵∠B1B2C=90°,∴∠CB1B2=30°,
∴CB2=,B1B2=,∴S1=,
同理,Rt△B2C1B3中,B2C1=B1B2=,∴C1B3=×=,B2B3=,
∴S2=,
同理,S3=
…,
∴Sn=,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,將△ABC繞點B順時針方向旋轉(zhuǎn)到△A′BC′的位置,此時點A′恰好在CB的延長線上,則圖中陰影部分的面積為_____(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)工會開展“一周工作量完成情況”調(diào)查活動,隨機(jī)調(diào)查了部分員工一周的工作量剩余情況,并將調(diào)查結(jié)果統(tǒng)計后繪制成如圖1和圖2所示的不完整統(tǒng)計圖.
(1)被調(diào)查員工人數(shù)為 人:
(2)把條形統(tǒng)計圖補(bǔ)充完整;
(3)若該企業(yè)有員工10000人,請估計該企業(yè)某周的工作量完成情況為“剩少量”的員工有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( 。
A. 15 B. 12.5 C. 14.5 D. 17
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:
小紅同學(xué)在學(xué)習(xí)過程中遇到這樣一道計算題“計算”,他覺得太麻煩,估計應(yīng)該有可以簡化計算的方法,就去請教崔老師.崔老師說:你完成下面的問題后就可能知道該如何簡化計算啦!
獲取新知:
請你和小紅一起完成崔老師提供的問題:
(1)填寫下表:
(2)觀察表格,你發(fā)現(xiàn)與有什么數(shù)量關(guān)系?請直接寫出與之間的數(shù)量關(guān)系.
解決問題:
(3)請結(jié)合上述的有關(guān)信息,計算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一道證明題,李老師已給同學(xué)們講解了思路.請你將過程和理由補(bǔ)充完整.
已知∠1=∠2,∠A=∠E. 求證:AD∥BE.
證明:∵∠1=∠2 (已知)
∴AC∥________(___________________________________)
∴∠3= _______ (___________________________________)
又∵∠A=∠E(___________)
∴∠A=______(___________________)
∴AD∥BE (_________________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=,∠B=,AC=1,BC=,AB=2,AC在直線l上,將△ABC繞點A順時針轉(zhuǎn)到位置①可得到點P1,此時AP1=2;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP2=2+;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP3=3+…,按此順序繼續(xù)旋轉(zhuǎn),得到點P2016,則AP2016=( )
A. 2016+671B. 2016+672
C. 2017+671D. 2017+672
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠BAC=45°.
(1)尺規(guī)作圖:
①在CA的延長線上截取AD=AB,并連結(jié)BD;
②在∠BAC內(nèi)部作∠CAE=∠ABD,交BC邊于點E;(保留作圖痕跡,不寫作法)
(2)求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(-1,5),B(-1,0),C(-4,3).
(Ⅰ)求△ABC的面積;
(Ⅱ)在圖中作出△ABC關(guān)于軸的對稱圖形△A1B1C1,并寫出點A1、B1、C1的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com