【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長(zhǎng)線相交于點(diǎn)EAB、DC的延長(zhǎng)線相交于點(diǎn)F.若∠EF=80°,則∠A____°.

【答案】50

【解析】試題分析:連結(jié)EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠A+∠BCD=180°,根據(jù)對(duì)頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內(nèi)角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內(nèi)角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.

試題解析:連結(jié)EF,如圖,

四邊形ABCD內(nèi)接于⊙O,

∴∠A+∠BCD=180°

∠BCD=∠ECF,

∴∠A+∠ECF=180°

∵∠ECF+∠1+∠2=180°,

∴∠1+∠2=∠A

∵∠A+∠AEF+∠AFE=180°,

∠A+∠AEB+∠1+∠2+∠AFD=180°,

∴∠A+80°+∠A=180°,

∴∠A=50°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,水平地面上有一幢高為AD的樓,樓前有坡角為30°、長(zhǎng)為6米的斜坡.已知從A點(diǎn)觀測(cè)B、C的俯角分別為60°30°

1)求樓高;

2)現(xiàn)在要將一個(gè)半徑為2米的⊙O從坡底與斜坡相切時(shí)的⊙O1位置牽引滾動(dòng)到斜坡上至圓剛好與斜坡上水平面相切時(shí)的⊙O2位置,求滾動(dòng)過(guò)程中圓心O移動(dòng)的總長(zhǎng)度.(參考數(shù)據(jù):tan15°2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x軸上有點(diǎn)A1,0),點(diǎn)By軸上,點(diǎn)Cm,0)為x軸上一動(dòng)點(diǎn)且m<﹣1,連接AB,BC,tanABO,以線段BC為直徑作M交線段AB于點(diǎn)D,過(guò)點(diǎn)B作直線lAC過(guò)A,B,C三點(diǎn)的拋物線為yax2+bx+e,直線與拋物線和M的另一個(gè)交點(diǎn)分別是E,F,當(dāng)EFBD時(shí),則m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A﹣1.0),B30)兩點(diǎn),與y軸交于點(diǎn)C0,﹣3),頂點(diǎn)為D

1)求此拋物線的解析式.

2)求此拋物線頂點(diǎn)D的坐標(biāo)和對(duì)稱軸.

3)探究對(duì)稱軸上是否存在一點(diǎn)P,使得以點(diǎn)PD、A為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)求出所有符合條件的P點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA8,OC4OA、OC分別在x軸與y軸上,DOA上一點(diǎn),且CDAD

1)求點(diǎn)D的坐標(biāo);

2)若經(jīng)過(guò)B、CD三點(diǎn)的拋物線與x軸的另一個(gè)交點(diǎn)為E,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);

3)在(2)中的拋物線上位于x軸上方的部分,是否存在一點(diǎn)P,使△PBC的面積等于梯形DCBE的面積?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)OAD上一動(dòng)點(diǎn)(4OA8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作圓O的切線交邊BC于點(diǎn)N.

1)求證:△ODM∽△MCN;

2)設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);

3)在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,設(shè)△CMN的周長(zhǎng)為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象的頂點(diǎn)在第一象限,且過(guò)點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab0,②0b1,③0a+b+c2,④當(dāng)x>﹣1時(shí),y0.其中正確結(jié)論的個(gè)數(shù)是( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】梯形ABCD中,,,AD、BC為半徑中的兩弦.

1)畫出符合條件的大致圖形,判斷梯形ABCD形狀為______

2)求出該梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案