【題目】已知x軸上有點(diǎn)A(1,0),點(diǎn)B在y軸上,點(diǎn)C(m,0)為x軸上一動(dòng)點(diǎn)且m<﹣1,連接AB,BC,tan∠ABO,以線段BC為直徑作⊙M交線段AB于點(diǎn)D,過(guò)點(diǎn)B作直線l∥AC過(guò)A,B,C三點(diǎn)的拋物線為y=ax2+bx+e,直線與拋物線和⊙M的另一個(gè)交點(diǎn)分別是E,F,當(dāng)EF=BD時(shí),則m的值為_____.
【答案】.
【解析】
先通過(guò)tan∠ABO及A(1,0)求出點(diǎn)B的坐標(biāo),然后將A,B,C代入拋物線的解析式中,求出相應(yīng)的a,b,e,用含m的式子表示出拋物線的對(duì)稱軸,利用拋物線的對(duì)稱性,可得EB,FB的長(zhǎng),進(jìn)而求出EF的長(zhǎng)為定長(zhǎng);連接CD,證明△CAD∽△BAO,列出比例式,將相關(guān)線段代入,化簡(jiǎn)即可求出m的值.
∵A(1,0),
∴OA=1,
∵tan∠ABO,
∴OB=2,即:點(diǎn)B的坐標(biāo)為(0,2).
點(diǎn)C(m,0),A(1,0),B(0,2)在拋物線y=ax2+bx+e上,
∴,
解得:b,a,
∴對(duì)稱軸x.
∵EB=﹣(1+m),FB=﹣m,EF=FB﹣EB=1,
∴線段EF的長(zhǎng)是定值1.
∴BD=EF=1.
如圖所示,連接CD
∵BC為直徑
∴∠CDB=90°
∴∠CDA=∠AOB=90°,∠CAD=∠BAO
∴△CAD∽△BAO
∴
A(1,0),B(0,2),C(m,0),
∴AB,AC=1﹣m,AO=1
∵BD=1
∴AD1
∴
∴1﹣m=5
∴m
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在⊙O外,PC是⊙O的切線,C為切點(diǎn),直線PO與⊙O相交于點(diǎn)A、B.
(1)若∠A=30°,求證:PA=3PB;
(2)小明發(fā)現(xiàn),∠A在一定范圍內(nèi)變化時(shí),始終有∠BCP=(90°﹣∠P)成立.請(qǐng)你寫(xiě)出推理過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A,B.
(1)求拋物線解析式;
(2)點(diǎn)C(m,0)在線段OA上(點(diǎn)C不與A,O點(diǎn)重合),CD⊥OA交AB于點(diǎn)D,交拋物線于點(diǎn)E,若DE=AD,求m的值;
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對(duì)稱軸上,在(2)的條件下,是否存在以點(diǎn)D,B,M,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CE=2DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正確結(jié)論的個(gè)數(shù)是( )
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仿照例題完成任務(wù):
例:如圖1,在網(wǎng)格中,小正方形的邊長(zhǎng)均為,點(diǎn),,,都在格點(diǎn)上,與相交于點(diǎn),求的值.
解析:連接,,導(dǎo)出,再根據(jù)勾股定理求得三角形各邊長(zhǎng),然后利用三角函數(shù)解決問(wèn)題.具體解法如下:
連接,,則,
,根據(jù)勾股定理可得:
,,,
,
是直角三角形,,
即.
任務(wù):
(1)如圖2,,,,四點(diǎn)均在邊長(zhǎng)為的正方形網(wǎng)格的格點(diǎn)上,線段,相交于點(diǎn),求圖中的正切值;
(2)如圖3,,,均在邊長(zhǎng)為的正方形網(wǎng)格的格點(diǎn)上,請(qǐng)你直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣3與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),經(jīng)過(guò)A、B、C三點(diǎn)的圓的圓心M(1,m)恰好在此拋物線的對(duì)稱軸上,⊙M的半徑為.設(shè)⊙M與y軸交于D,拋物線的頂點(diǎn)為E.
(1)求m的值及拋物線的解析式;
(2)設(shè)∠DBC=α,∠CBE=β,求sin(α﹣β)的值;
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似?若存在,請(qǐng)指出點(diǎn)P的位置,并直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】割圓術(shù)是我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)造的一種求周長(zhǎng)和面積的方法:隨著圓內(nèi)接正多邊形邊數(shù)的增加,它的周長(zhǎng)和面積越來(lái)越接近圓周長(zhǎng)和圓面積,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”.劉徽就是大膽地應(yīng)用了以直代曲、無(wú)限趨近的思想方法求出了圓周率.請(qǐng)你也用這個(gè)方法求出二次函數(shù)的圖象與兩坐標(biāo)軸所圍成的圖形最接近的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長(zhǎng)線相交于點(diǎn)E,AB、DC的延長(zhǎng)線相交于點(diǎn)F.若∠E+∠F=80°,則∠A=____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=1,AC=4,把邊長(zhǎng)分別為,,,…,的n個(gè)正方形依次放入△ABC中,則第n個(gè)正方形的邊長(zhǎng)_______________(用含n的式子表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com