【題目】如圖,在矩形OABC中,OA=8,OC=4,OA、OC分別在x軸與y軸上,D為OA上一點,且CD=AD.
(1)求點D的坐標;
(2)若經過B、C、D三點的拋物線與x軸的另一個交點為E,請直接寫出點E的坐標;
(3)在(2)中的拋物線上位于x軸上方的部分,是否存在一點P,使△PBC的面積等于梯形DCBE的面積?若存在,求出點P的坐標,若不存在,請說明理由.
【答案】(1)D(3,0);(2)E(5,0);(3)不存在
【解析】
(1)設OD=x,則AD=CD=8-x ,在Rt△OCD中,根據勾股定理即可列方程求解;
(2)由題意知,拋物線的對稱軸為直線x=4,根據拋物線的對稱性即可求得結果;
(3)若存在這樣的P,則由S梯形=20得S△PBC=·BC·h=20可求得h=5,根據待定系數(shù)法求得拋物線函數(shù)關系式,從而得到頂點坐標,即可得到頂點到BC的距離為4+=<5,即可作出判斷.
(1)設OD=x,則AD=CD=8-x
Rt△OCD中,(8-x)2=x2+42,得x=3
∴OD=3
∴D(3,0)
(2)由題意知,拋物線的對稱軸為直線x=4
∵D(3,0), ∴另一交點E(5,0)
(3)若存在這樣的P,則由S梯形=20得S△PBC=·BC·h=20.
∴h=5
∵B(8,-4), C(0,-4), D(3,0)
∴該拋物線函數(shù)關系式為:y=-x2+x-4.
頂點坐標為(4,)
∴頂點到BC的距離為4+=<5
∴不存在這樣的點P, 使得△PBC的面積等于梯形DCBE的面積.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠B=60,∠ACB=75,點D是BC邊上一動點,以AD為直徑作⊙O,分別交AB、AC于E、F,若弦EF的最小值為1,則AB的長為
A. | B. | C.1.5 | D. |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】仿照例題完成任務:
例:如圖1,在網格中,小正方形的邊長均為,點,,,都在格點上,與相交于點,求的值.
解析:連接,,導出,再根據勾股定理求得三角形各邊長,然后利用三角函數(shù)解決問題.具體解法如下:
連接,,則,
,根據勾股定理可得:
,,,
,
是直角三角形,,
即.
任務:
(1)如圖2,,,,四點均在邊長為的正方形網格的格點上,線段,相交于點,求圖中的正切值;
(2)如圖3,,,均在邊長為的正方形網格的格點上,請你直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】割圓術是我國古代數(shù)學家劉徽創(chuàng)造的一種求周長和面積的方法:隨著圓內接正多邊形邊數(shù)的增加,它的周長和面積越來越接近圓周長和圓面積,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽就是大膽地應用了以直代曲、無限趨近的思想方法求出了圓周率.請你也用這個方法求出二次函數(shù)的圖象與兩坐標軸所圍成的圖形最接近的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將背面完全相同,正面上分別寫有數(shù)字1,2,3,4的四張卡片混合后,嘉輝從中隨機地抽取一張,把卡片上的數(shù)字作為被減數(shù)。將形狀、大小完全相同,分別標有數(shù)字1,2,3的三個小球混合后,向東從中隨機地抽取一個,把小球上的數(shù)字作為減數(shù),然后計算出這兩數(shù)的差。
(1)請你用畫樹狀圖或列表的方法,求這兩數(shù)的差為0的概率;
(2)嘉輝與向東做游戲,規(guī)則是:若這兩數(shù)的差為非負數(shù),則嘉輝贏;否則,向東贏。你認為該游戲公平嗎?請說明理由。如果不公平,請你修改游戲規(guī)則,使游戲公平。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=____°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學在研究如何在△ABC內做一個面積最大的正方形時,想到了可以利用位似知識解決這個問題,他的做法是:(如圖1)先在△ABC內作一個小正方形DEFG,使得頂點D落在邊AB上,頂點E、F落在邊BC上,然后連接BG并延長交AC邊于點H,作HK⊥BC,HI∥BC,再作IJ⊥BC于J,則正方形HIJK就是所作的面積最大的正方形.
(1)若△ABC中,AB=4,∠ABC=60°,∠ACB=45°,請求出小明所作的面積最大的正方形的邊長.
(2)拓展運用:
如圖2,已知∠BAC,在角的內部有一點P,請畫一個⊙M,使得⊙M經過點P,且與AB、AC都相切.(注:并簡要說明畫法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖中,,D、E為BC上兩點,且.將繞A順時針旋轉90°得到,連接EF,下列結論:①AE平分②③④,正確的有(序號)______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=﹣(x+2)2﹣2
(1)指出函數(shù)圖象的開口方向是 ,對稱軸是 ,頂點坐標為 .
(2)當x 時,y隨x的增大而減。
(3)怎樣移動拋物線y=﹣x2就可以得到拋物線y=﹣(x+2)2﹣2.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com