【題目】如圖,ABC中,∠B=60,∠ACB=75,點DBC邊上一動點,以AD為直徑作⊙O,分別交AB、ACEF,若弦EF的最小值為1,則AB的長為

A

B

C1.5

D

【答案】B

【解析】

首先連接OE,OF,過O點作OHEF,垂足為H,可求得半徑OE的長,又由當ADABC的邊BC上的高時,AD最大時為直徑,OE最大,OH最大,EF最小,可求得AD的長,由三角函數(shù)的性質(zhì),即可求得AB的長.

解:如圖,連接OEOF,過O點作OHEF,垂足為H,
EH=FH=EF=×1=
∵在ADB中,∠B=60°,∠ACB=75°,
∴∠BAC=45°
∴∠EOF=2BAC=90°,
OE=OF
∴∠EOH=EOF=45°,
OE= =,
∵當ADABC的邊BC上的高時,AD最大時為直徑,OE最大,OH最大,EF最小,
AD=2OE=,
AB==

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖.ABC.AB=AC=5cm,BC=6cm.PB出發(fā),沿BC方向勻速運動.速度為1cm/s.同時,點Q從點A出發(fā),沿AC方向勻速運動.速度為1cm/s,過點PPMBCAB于點M,過點QQNBC,垂足為點N,連接MQ,若設(shè)運動時間為t(s)(0<t<3),解答下列問題:

1)當t為何值時,點M是邊AB中點?

2)設(shè)四邊形PNQM的面積為y(cm2),求出yt之間的函數(shù)關(guān)系式;

3)是否存在某一時刻t,使S四邊形PNQM:SABC=4:9?若存在,求出此時t的值;若不存在,說明理由;

4)是否存在某一時刻t,使四邊形PNQM為正方形?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點O是∠ABC和∠ACB兩個內(nèi)角平分線的交點,過點OEFBC分別交ABAC于點E,F,已知ABC的周長為8,BCxAEF的周長為y,則表示yx的函數(shù)圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:矩形的旋轉(zhuǎn)

問題情境:

在綜合與實踐課上,老師讓同學們以矩形的旋轉(zhuǎn)為主題開展數(shù)學活動.具體要求:如圖1,將長與寬都相等的兩個矩形紙片ABCDEFGH疊放在一起,這時對角線ACEG互相重合.固定矩形ABCD,將矩形EFGHAC的中點O逆時針方向旋轉(zhuǎn),直到點E與點B重合時停止,在此過程中開展探究活動.

操作發(fā)現(xiàn):

1)雄鷹小組初步發(fā)現(xiàn):在旋轉(zhuǎn)過程中,當邊ABEF交于點M,邊CDGH交于點N,如圖2、圖3所示,則線段AMCN始終存在的數(shù)量關(guān)系是   

2)雄鷹小組繼續(xù)探究發(fā)現(xiàn):在旋轉(zhuǎn)開始后,當兩個矩形紙片重疊部分為四邊形QMRN時,如圖3所示,四邊形QMRN為菱形,請你證明這個結(jié)論.

3)雄鷹小組還發(fā)現(xiàn)在問題(2)中的四邊形QMRN中∠MQN與旋轉(zhuǎn)角∠AOE存在著特定的數(shù)量關(guān)系,請你寫出這一關(guān)系,并說明理由.

實踐探究:

4)在圖3中,隨著矩形紙片EFGH的旋轉(zhuǎn),四邊形QMRN的面積會發(fā)生變化.若矩形紙片的長為,寬為,請你幫助雄鷹小組探究當旋轉(zhuǎn)角∠AOE為多少度時,四邊形QMRN的面積最大?最大面積是多少?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.

(1)與y軸的交點坐標是   ,頂點坐標是   

(2)在坐標系中利用描點法畫出此拋物線;

x

y

(3)結(jié)合圖象回答:當﹣2<x<2時,函數(shù)值y的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,水平地面上有一幢高為AD的樓,樓前有坡角為30°、長為6米的斜坡.已知從A點觀測B、C的俯角分別為60°30°

1)求樓高;

2)現(xiàn)在要將一個半徑為2米的⊙O從坡底與斜坡相切時的⊙O1位置牽引滾動到斜坡上至圓剛好與斜坡上水平面相切時的⊙O2位置,求滾動過程中圓心O移動的總長度.(參考數(shù)據(jù):tan15°2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以AC為直徑的⊙OAB邊交于點D,過點D作⊙O的切線.交BC于點E.

(1)求證:BE=EC

(2)填空:①若∠B=30°,AC=2,則DB=   ;

②當∠B=   度時,以O,D,E,C為頂點的四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于C0,3),A點在原點的左側(cè),B點的坐標為(3,0).點P是拋物線上一個動點,且在直線BC的上方.

1)求這個二次函數(shù)的表達式.

2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POPC,那么是否存在點P,使四邊形POPC為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.

3)當點P運動到什么位置時,四邊形 ABPC的面積最大,并求出此時點P的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA8,OC4,OA、OC分別在x軸與y軸上,DOA上一點,且CDAD

1)求點D的坐標;

2)若經(jīng)過B、C、D三點的拋物線與x軸的另一個交點為E,請直接寫出點E的坐標;

3)在(2)中的拋物線上位于x軸上方的部分,是否存在一點P,使△PBC的面積等于梯形DCBE的面積?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案