【題目】如圖,D、EBC上兩點,且.將A順時針旋轉(zhuǎn)90°得到,連接EF,下列結(jié)論:①AE平分,正確的有(序號)______

【答案】①②③

【解析】

由△ADC繞點A順時針旋轉(zhuǎn)90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判斷∠FAE=DAE,可證△AED≌△AEF.由已知條件可證△BEF為直角三角形,則有BE2+DC2=DE2是正確的.

解:∵△ADC繞點A順時針旋轉(zhuǎn)90°得△AFB,
∴△ADC≌△AFB,∠FAD=90°,
AD=AF,
∵∠DAE=45°,
∴∠FAE=90°-DAE=45°,
∴∠DAE=FAE

AE平分,故①正確;
在△AED與△AEF中,

∴△AED≌△AEFSAS),故②正確;

ED=FE,∠ACB=ABF
RtABC中,
∵∠ABC+ACB=90°,
∴∠ABC+ABF=90°即∠FBE=90°,
BE2+BF2=FE2,即BE2+DC2=DE2,故③正確;

ABC=45°,設(shè)

BEF=45°

FBE=90°

BFE=45°

BF=BE

DC=BE

D、EBC上兩點

BE不一定等于DC,即④錯誤.

故答案為:①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于C0,3),A點在原點的左側(cè),B點的坐標(biāo)為(3,0).點P是拋物線上一個動點,且在直線BC的上方.

1)求這個二次函數(shù)的表達(dá)式.

2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POPC,那么是否存在點P,使四邊形POPC為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.

3)當(dāng)點P運動到什么位置時,四邊形 ABPC的面積最大,并求出此時點P的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA8,OC4OA、OC分別在x軸與y軸上,DOA上一點,且CDAD

1)求點D的坐標(biāo);

2)若經(jīng)過B、CD三點的拋物線與x軸的另一個交點為E,請直接寫出點E的坐標(biāo);

3)在(2)中的拋物線上位于x軸上方的部分,是否存在一點P,使△PBC的面積等于梯形DCBE的面積?若存在,求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣10),下列結(jié)論:①ab0,②0b1,③0a+b+c2,④當(dāng)x>﹣1時,y0.其中正確結(jié)論的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司經(jīng)銷某品牌運動鞋,年銷售量為10萬雙,每雙鞋按250元銷售,可獲利25﹪設(shè)每雙鞋的成本價為a.

1)試求a的值;

2)為了擴(kuò)大銷售量,公司決定拿出一定量的資金做廣告,根據(jù)市場調(diào)查,若每年投入廣告費為(萬元)時,產(chǎn)品的年銷售量將是原來年銷售量的倍,且之間的關(guān)系滿足.請根據(jù)圖象提供的信息,求出之間的函數(shù)關(guān)系式;

3)在(2)的條件下求年利潤S(萬元)與廣告費(萬元)之間的函數(shù)關(guān)系式,并請回答廣告費(萬元)在什么范圍內(nèi),公司獲得的年利潤S(萬元)隨廣告費的增大而增多?(注:年利潤S=年銷售總額-成本費-廣告費)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】梯形ABCD中,,,AD、BC為半徑中的兩弦.

1)畫出符合條件的大致圖形,判斷梯形ABCD形狀為______

2)求出該梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進(jìn)某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形DEFG的頂點D、EABC的邊BC上,頂點G、F分別在邊AB、AC上.如果BC=4,ABC的面積是6,那么這個正方形的邊長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別相交于點B、C,經(jīng)過B、C兩點的拋物線軸的另一個交點為A,頂點為P,且對稱軸為直線。點G是拋物線位于直線下方的任意一點,連接PB、GBGC、AC .

1)求該拋物線的解析式;

2)求GBC面積的最大值;

3)連接AC,在軸上是否存在一點Q,使得以點P,B,Q為頂點的三角形與ABC相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案