【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點G在對角線BD上,GECD,GFBC,AD1 500 m,小敏行走的路線為B→A→G→E,小聰行走的路線為B→A→D→E→F.若小敏行走的路程為3 100 m,則AGGE______m,由此可得小聰行走的路程為_______m.

【答案】1600 4600

【解析】

連接GC,根據(jù)正方形的性質(zhì)易證DE=GE,再證明△AGD≌△GDC,根據(jù)全等三角形的性質(zhì)可得AG=CG;在矩形GECF中,根據(jù)矩形的對角線相等可得EF=CG,即可得EF=AG.根據(jù)小敏走的路程為BA+AG+GE=3100m,即可求得AG+GE的值;根據(jù)小聰行走的路程為BA+AD+DE+EF= BA+AD+ GE+AG,即可求得小聰所走的路程.

連接GC,

∵四邊形ABCD為正方形,

AD=AB=CD=1500m,∠ADB=CDB=45°,

∵∠CDB=45°,GEDC

∴△DEG是等腰直角三角形,

DE=GE

在△AGD和△GDC中,

∴△AGD≌△GDC

AG=CG

在矩形GECF中,EF=CG,

EF=AG

∵小敏共走了3100m

BA+AG+GE=3100m,

AB=1500m

AG+GE=1600m;

∴小聰行走的路程為:BA+AD+DE+EF= BA+AD+ GE+AG=1500+1500+1600=4600m.

故答案為:1600;4600.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABCDx軸,BCDEy軸,且AB=CD=4cm,OA=5cm,DE=2cm,動點P從點A出發(fā),沿A→B→C路線運動到點C停止;動點Q從點O出發(fā),沿O→E→D→C路線運動到點C停止;若P、Q兩點同時出發(fā),且點P的運動速度為1cm/s,點Q的運動速度為2cm/s.

(1)直接寫出B、C、D三個點的坐標;

(2)當P、Q兩點出發(fā)s時,試求PQC的面積;

(3)設兩點運動的時間為t s,用t的式子表示運動過程中OPQ的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進價為20元/件,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案:
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元.請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為個單位長度的小正方形組成的網(wǎng)格中,、正方形、正方形的頂點均在格點上.

1)以格點為原點,建立合適的平面直角坐標系,使得坐標分別為、,則點的坐標為______,點的坐標為_______;

2)利用面積計算線段________

3)點為直線上一動點,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點C出發(fā),按C→B→A的路徑,以2cm每秒的速度運動,設運動時間為t秒,當t___________時,ACP是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了拉動內(nèi)需,全國各地汽車購置稅補貼活動在2009年正式開始,某經(jīng)銷商在政策出臺前一個月共售出某品牌汽車的手動型和自動型共960臺,政策出臺后的第一個月售出這兩種型號的汽車共1228臺,其中手動型和自動型汽車的銷售量分別比政策出臺前一個月增長30%25%

1)在政策出臺前一個月,銷售的手動型和自動型汽車分別為多少臺?

2)若手動型汽車每臺價格為8萬元,自動型汽車每臺價格為9萬元.根據(jù)汽車補貼政策,政府按每臺汽車價格的5%給購買汽車的用戶補貼,問政策出臺后的第一個月,政府對這1228臺汽車用戶共補貼了多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P的坐標為2,a2+1,則點P所在的象限是____;以方程組 的解為坐標的點x,y在平面直角坐標系中的位置是__________;在平面直角坐標系中,如果mn0,請寫出點m,|n|可能在的所有象限:____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=ax2+bx+4 與x軸交于點A(﹣3,0)和B(2,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,若點D為CB的中點,將線段DB繞點D旋轉(zhuǎn),點B的對應點為點G,當點G恰好落在拋物線的對稱軸上時,求點G的坐標;

(3)如圖2,若點D為直線BC或直線AC上的一點,E為x軸上一動點,拋物線

y=ax2+bx+4對稱軸上是否存在點F,使以B,D,F(xiàn),E為頂點的四邊形為菱形?若存在,請求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在等腰RtABC中,∠ACB90°,CD平分∠ACBAB于點D.點P為線段CD上一點(不與端點CD重合),PEPA,PEBC的延長線交于點E,與AC交于點F,連接AE、AP、BP

1)求證:APBP;

2)求∠EAP的度數(shù);

3)探究線段EC、PD之間的數(shù)量關系,并證明.

查看答案和解析>>

同步練習冊答案