3.已知關(guān)于x的方程3x+2a=2的解是x=a-1,則a的值為1,此方程的解為x=0.

分析 把x=a-1代入方程計(jì)算即可求出a的值,進(jìn)而求出方程的解.

解答 解:把x=a-1代入方程得:3a-3+2a=2,
解得:a=1,
此方程的解為x=1-1=0.
故答案為:1,x=0.

點(diǎn)評(píng) 此題考查了一元一次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.?dāng)?shù)學(xué)活動(dòng)--“關(guān)于三角形全等的條件”
【問題提出】學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
【初步思考】我們不妨將問題用符號(hào)語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【逐步探究】
(1)第一種情況:當(dāng)∠B是直角時(shí),如圖①,根據(jù)HL定理,可得△ABC≌△DEF.
(2)第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF仍成立.請(qǐng)你完成證明.
已知:如圖②,△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,
求證:△ABC≌△DEF.
(3)第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
【深入思考】
∠B還要滿足什么條件,就可以使△ABC≌△DEF?(請(qǐng)直接寫出結(jié)論.)
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若∠B≥∠A,則△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,△ABC中,AB=AC,D是AB的中點(diǎn),AD=5cm,DE⊥AB于D交AC于E,△EBC的周長是24cm,則BC=( 。ヽm.
A.29B.19C.14D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.在3.141,$\sqrt{2}$,-$\frac{22}{7}$,-$\root{3}{27}$,0,4.2$\stackrel{•}{1}$$\stackrel{•}{7}$,$\frac{1}{π}$,$\sqrt{\frac{49}{100}}$,0.1010010001…(相鄰兩個(gè)1之間0的個(gè)數(shù)逐次加1)這些數(shù)中,無理數(shù)的個(gè)數(shù)為( 。
A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.已知A,B,C是直線l上三點(diǎn),線段AB=6cm,且AB=$\frac{1}{2}$AC,則BC=(  )
A.6cmB.12cmC.18cmD.6cm或18cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.以下列各組數(shù)作為三角形的三邊長,其中不能構(gòu)成直角三角形的是( 。
A.1,1,$\sqrt{2}$B.6,8,10C.8,15,17D.1,2,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.吳老師在與同學(xué)們進(jìn)行“螞蟻怎樣爬最近”的課題研究時(shí)設(shè)計(jì)了以下問題,請(qǐng)你根據(jù)下列所給的條件分別求出螞蟻需要爬行的最短路程的長.
(1)如圖1,正方體的棱長為5cm,一只螞蟻欲從正方體底面上的點(diǎn)A沿正方體表面爬到點(diǎn)C1處;
(2)如圖2,長方體底面是邊長為5cm的正方形,高為6cm,一只螞蟻欲從長方體底面上的點(diǎn)A沿長方體表面爬到點(diǎn)C1處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,△ABC內(nèi)接于⊙O,直徑AF平分∠BAC,交BC于點(diǎn)D.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長BA到點(diǎn)E,連接ED、EC,ED交AC于點(diǎn)G,且ED=EC,求證:∠EGC=∠ECA+2∠ACB;
(3)如圖3,在(2)的條件下,當(dāng)BC是⊙O的直徑時(shí),取DC的中點(diǎn)M,連接AM并延長交圓于點(diǎn)N,且EG=5,連接CN并求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:過直線外一點(diǎn)作已知直線的平行線.
已知:直線l及其外一點(diǎn)A.
求作:l的平行線,使它經(jīng)過點(diǎn)A.

小云的作法如下:
(1)在直線l上任取一點(diǎn)B,以點(diǎn)B為圓心,AB長為半徑作弧,交直線l于點(diǎn)C;
(2)分別以A,C為圓心,以AB長為半徑作弧,兩弧相交于點(diǎn)D;
(3)作直線AD

所以直線AD即為所求.
老師說:“小云的作法正確.”
請(qǐng)回答:小云的作圖依據(jù)是四條邊都相等的四邊形是菱形;菱形的對(duì)邊平行.

查看答案和解析>>

同步練習(xí)冊(cè)答案