【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)與y軸交于點(diǎn)C(0,2),它的頂點(diǎn)為D(1,m),且.
(1)求m的值及拋物線(xiàn)的表達(dá)式;
(2)將此拋物線(xiàn)向上平移后與x軸正半軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=OB.若點(diǎn)A是由原拋物線(xiàn)上的點(diǎn)E平移所得,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸上的一點(diǎn)(位于x軸上方),且∠APB=45°.求P點(diǎn)的坐標(biāo).
【答案】(1)(2)E(3,-1)(3)
【解析】
(1)作DH⊥y軸,根據(jù),求出m的值,再根據(jù)對(duì)稱(chēng)軸是x=1,和C,D兩點(diǎn)求出拋物線(xiàn)的表達(dá)式即可;
(2)設(shè)平移后的拋物線(xiàn)表達(dá)式為,然后得出OA=OB,得出B(0,2+k),A點(diǎn)的坐標(biāo)為(2+k,0),然后代入求出k的值即可;
(3)設(shè)P(1,y),設(shè)對(duì)稱(chēng)軸與AB的交點(diǎn)為M,與x軸的交點(diǎn)為H,則H(1,0),由(2)得出A,B的坐標(biāo),然后得出△BMP∽△BPA,然后根據(jù)
解:(1)作DH⊥y軸,垂足為H,∵D(1,m)(),∴DH= m,HO=1.
∵,∴,∴m=3.
∴拋物線(xiàn)的頂點(diǎn)為D(1,3).
又∵拋物線(xiàn)與y軸交于點(diǎn)C(0,2),
∴(2∴∴拋物線(xiàn)的表達(dá)式為.
(2)∵將此拋物線(xiàn)向上平移,
∴設(shè)平移后的拋物線(xiàn)表達(dá)式為.
則它與y軸交點(diǎn)B(0,2+k).
∵平移后的拋物線(xiàn)與x軸正半軸交于點(diǎn)A,且OA=OB,∴A點(diǎn)的坐標(biāo)為(2+k,0).
∴.∴.
∵,∴.
∴A(3,0),拋物線(xiàn)向上平移了1個(gè)單位.
∵點(diǎn)A由點(diǎn)E向上平移了1個(gè)單位所得,∴E(3,-1).
(3)由(2)得A(3,0),B(0, 3),∴.
∵點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸上的一點(diǎn)(位于x軸上方),且∠APB=45°,原頂點(diǎn)D(1,3),
∴設(shè)P(1,y),設(shè)對(duì)稱(chēng)軸與AB的交點(diǎn)為M,與x軸的交點(diǎn)為H,則H(1,0).
∵A(3,0),B(0, 3),∴∠OAB=45°, ∴∠AMH=45°.
∴M(1,2). ∴.
∵∠BMP=∠AMH, ∴∠BMP=45°.
∵∠APB=45°, ∴∠BMP=∠APB.
∵∠B=∠B,∴△BMP∽△BPA.
∴.∴
∴.∴(舍).
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形OABC的邊OC、OA分別在x、y軸的正半軸上,設(shè)點(diǎn)B(4,4),點(diǎn)P(t,0)是x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)O作OH⊥AP于點(diǎn)H,直線(xiàn)OH交直線(xiàn)BC于點(diǎn)D,連AD.
(1)如圖1,當(dāng)點(diǎn)P在線(xiàn)段OC上時(shí),求證:OP=CD;
(2)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,△AOP與以A、B、D為頂點(diǎn)的三角形相似時(shí),求t的值;
(3)如圖2,拋物線(xiàn)y=﹣x2+x+4上是否存在點(diǎn)Q,使得以P、D、Q、C為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于A,B兩點(diǎn),它們的對(duì)稱(chēng)軸與x軸交于點(diǎn)N,過(guò)頂點(diǎn)M作ME⊥y軸于點(diǎn)E,連結(jié)BE交MN于點(diǎn)F.已知點(diǎn)A的坐標(biāo)為(﹣1,0).
(1)求該拋物線(xiàn)的解析式及頂點(diǎn)M的坐標(biāo);
(2)求△EMF與△BNF的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)計(jì)劃組織九年級(jí)師生去韶山舉行畢業(yè)聯(lián)歡活動(dòng).下面是年級(jí)組長(zhǎng)李老師和小芳、小明同學(xué)有關(guān)租車(chē)問(wèn)題的對(duì)話(huà):
李老師:“平安客運(yùn)公司有60座和45座兩種型號(hào)的客車(chē)可供租用,60座客車(chē)每輛每天的租金比45座的貴200元.”
小芳:“我們學(xué)校八年級(jí)師生昨天在這個(gè)客運(yùn)公司租用4輛60座和2輛45座的客車(chē)到韶山參觀,一天的租金共計(jì)5000元.”
小明:“我們九年級(jí)師生租用5輛60座和1輛45座的客車(chē)正好坐滿(mǎn).”
根據(jù)以上對(duì)話(huà),解答下列問(wèn)題:
(1)平安客運(yùn)公司60座和45座的客車(chē)每輛每天的租金分別是多少元?
(2)按小明提出的租車(chē)方案,九年級(jí)師生到該公司租車(chē)一天,共需租金多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過(guò)程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長(zhǎng)為4米.
(1)求新傳送帶AC的長(zhǎng)度.
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)5米的貨物MNQP是否需要挪走,并說(shuō)明理由.
參考數(shù)據(jù):.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象相交于點(diǎn)A(2,3)和點(diǎn)B,與x軸相交于點(diǎn)C(8,0).
(1)求這兩個(gè)函數(shù)的解析式;
(2)當(dāng)x取何值時(shí),y1>y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),經(jīng)過(guò)點(diǎn)C的直線(xiàn)與AB的延長(zhǎng)線(xiàn)交于點(diǎn)D,連接AC,BC,∠BCD=∠CAB.E是⊙O上一點(diǎn),弧CB=弧CE,連接AE并延長(zhǎng)與DC的延長(zhǎng)線(xiàn)交于點(diǎn)F.
(1)求證:DC是⊙O的切線(xiàn);
(2)若⊙O的半徑為3,sin∠D=,求線(xiàn)段AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖并填空
如圖,在Rt△ABC,∠BAC=90°,AD⊥BC于D,在②③圖中,MN=AB,∠MNE=∠B,現(xiàn)要以②③圖為基礎(chǔ),在射線(xiàn)NE上確定一點(diǎn)P,構(gòu)造出一個(gè)△MNP與①圖中某一個(gè)三角形全等.
(1)用邊長(zhǎng)限制P點(diǎn),畫(huà)法:_____,可根據(jù)SAS,AAS,ASA,HL中的______得到______.
(2)用直角限制點(diǎn)P,畫(huà)法:_______,可根據(jù)SAS,AAS,ASA,HL中的______得到______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=mx﹣1交y軸于點(diǎn)B,交x軸于點(diǎn)C,以BC為邊的正方形ABCD的頂點(diǎn)A(﹣1,a)在雙曲線(xiàn)y=﹣(x<0)上,D點(diǎn)在雙曲線(xiàn)y=(x>0)上,則k的值為( 。
A. 6 B. 5 C. 3 D. 2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com