【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,經(jīng)過點C的直線與AB的延長線交于點D,連接AC,BC,∠BCD=∠CABE是⊙O上一點,弧CB=弧CE,連接AE并延長與DC的延長線交于點F

1)求證:DC是⊙O的切線;

2)若⊙O的半徑為3,sinD,求線段AF的長.

【答案】(1)見解析;(2.

【解析】

(1)連接OC,BC,AB是⊙O的直徑,得到∠ACB=90°,即∠1+3=90°.根據(jù)等腰三角形的性質(zhì)得到∠1=2.得到∠DCB+3=90°.于是得到結(jié)論;
(2)根據(jù)三角函數(shù)的定義得到OD=5,AD=8.根據(jù)弧CB=弧CE得到∠2=4.推出OCAF.根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

(1)證明:連接OC,BC,

AB是⊙O的直徑,

∴∠ACB=90°,即∠1+3=90°.

OA=OC,

∴∠1=2.

∵∠DCB=BAC=1.

∴∠DCB+3=90°.

OCDF.

DF是⊙O的切線;

(2)解:在RtOCD中,OC=3,sinD=

OD=5,AD=8.

∵弧CB=弧CE,

∴∠2=4.

∴∠1=4.

OCAF.

∴△DOC∽△DAF.

=

AF=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+3x8的圖象與x軸交于A,B兩點(點A在點B的右側(cè)),與y軸交于點C

1)求直線BC的解析式;

2)點F是直線BC下方拋物線上的一點,當(dāng)BCF的面積最大時,在拋物線的對稱軸上找一點P,使得BFP的周長最小,請求出點F的坐標(biāo)和點P的坐標(biāo);

3)在(2)的條件下,是否存在這樣的點Q0,m),使得BFQ為等腰三角形?如果有,請直接寫出點Q的坐標(biāo);如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點P沿邊DA從點D開始向點A以1cm/s的速度移動;同時,點Q沿邊AB、BC從點A開始向點C以2cm/s的速度移動.當(dāng)點P移動到點A時,P、Q同時停止移動.設(shè)點P出發(fā)xs時,PAQ的面積為ycm2,y與x的函數(shù)圖象如圖,則線段EF所在的直線對應(yīng)的函數(shù)關(guān)系式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸交于點C0,2),它的頂點為D1,m),且.

1)求m的值及拋物線的表達(dá)式;

2)將此拋物線向上平移后與x軸正半軸交于點A,與y軸交于點B,且OA=OB.若點A是由原拋物線上的點E平移所得,求點E的坐標(biāo);

(3)在(2)的條件下,點P是拋物線對稱軸上的一點(位于x軸上方),且APB=45°.求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點C與點F重合時停止.設(shè)RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數(shù)關(guān)系的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線AB:y=﹣x+b分別與x,y軸交于A(6,0)、B 兩點,過點B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.

(1)求點B的坐標(biāo).

(2)求直線BC的解析式.

(3)直線 EF 的解析式為y=x,直線EFAB于點E,交BC于點 F,求證:SEBO=SFBO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點CCE∥BD,過點DDE∥ACCEDE相交于點E

1)求證:四邊形CODE是矩形.

2)若AB=5,AC=6,求四邊形CODE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市為方便行人過馬路,打算修建一座高為4x(m)的過街天橋.已知天橋的斜面坡度i=1:0.75是指坡面的鉛直高度DE(CF)與水平寬度AE(BF)的比,其中DC∥AB,CD=8x(m).

(1)請求出天橋總長和馬路寬度AB的比;

(2)若某人從A地出發(fā),橫過馬路直行(A→E→F→B)到達(dá)B地,平均速度是2.5m/s;返回時從天橋由BC→CD→DA到達(dá)A地,平均速度是1.5m/s,結(jié)果比去時多用了12.8s,請求出馬路寬度AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線BE交AC于點E,過點E作直線BE的垂線交AB于點F,⊙O是△BEF的外接圓.

(1)求證:AC是⊙O的切線;

(2)過點E作EH⊥AB于點H,求證:EF平分∠AEH;

(3)求證:CD=HF.

查看答案和解析>>

同步練習(xí)冊答案