【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長(zhǎng)為4米.

(1)求新傳送帶AC的長(zhǎng)度.

(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)5米的貨物MNQP是否需要挪走,并說明理由.

參考數(shù)據(jù):

【答案】(1)AC的長(zhǎng)度約為8米;(2)貨物MNQP不應(yīng)挪走.

【解析】

試題分析:(1)在構(gòu)建的直角三角形中,首先求出兩個(gè)直角三角形的公共直角邊,進(jìn)而在RtACD中,求出AC的長(zhǎng).

(2)通過解直角三角形,可求出BD、CD的長(zhǎng),進(jìn)而可求出BC、PC的長(zhǎng).然后判斷PC的值是否大于2米即可.

解:(1)如圖,

在RtABD中,AD=ABsin45°=4×=4.

在RtACD中,

∵∠ACD=30°

AC=2AD=8

即新傳送帶AC的長(zhǎng)度約為8米;

(2)結(jié)論:貨物MNQP不用挪走. (5分)

解:在RtABD中,BD=ABcos45°=4×=4.

在RtACD中,CD=ACcos30°=2

CB=CD﹣BD=2﹣4≈0.9.

PC=PB﹣CB≈4﹣0.9=3.1>2,

貨物MNQP不應(yīng)挪走.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點(diǎn),且ODBC,OD與AC交于點(diǎn)E.

(1)若B=70°,求CAD的度數(shù);

(2)若AB=4,AC=3,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2bxc上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表所示.

x

3

2

1

0

1

y

12

2

4

6

4

給出下列說法:拋物線與y軸的交點(diǎn)為(0,6);拋物線的對(duì)稱軸是在y軸的右側(cè);拋物線一定經(jīng)過點(diǎn)(3,0);當(dāng)x<0時(shí),函數(shù)值yx的增大而減。

從表中可知,上述說法正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)P沿邊DA從點(diǎn)D開始向點(diǎn)A以1cm/s的速度移動(dòng);同時(shí),點(diǎn)Q沿邊AB、BC從點(diǎn)A開始向點(diǎn)C以2cm/s的速度移動(dòng).當(dāng)點(diǎn)P移動(dòng)到點(diǎn)A時(shí),P、Q同時(shí)停止移動(dòng).設(shè)點(diǎn)P出發(fā)xs時(shí),PAQ的面積為ycm2,y與x的函數(shù)圖象如圖,則線段EF所在的直線對(duì)應(yīng)的函數(shù)關(guān)系式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3)B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;

(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸交于點(diǎn)C0,2),它的頂點(diǎn)為D1,m),且.

1)求m的值及拋物線的表達(dá)式;

2)將此拋物線向上平移后與x軸正半軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=OB.若點(diǎn)A是由原拋物線上的點(diǎn)E平移所得,求點(diǎn)E的坐標(biāo);

(3)在(2)的條件下,點(diǎn)P是拋物線對(duì)稱軸上的一點(diǎn)(位于x軸上方),且APB=45°.求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線上,點(diǎn)B與點(diǎn)E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)RtABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2xs之間函數(shù)關(guān)系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)CCE∥BD,過點(diǎn)DDE∥AC,CEDE相交于點(diǎn)E

1)求證:四邊形CODE是矩形.

2)若AB=5,AC=6,求四邊形CODE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,按照下列操作作圖:①以A為圓心,AC長(zhǎng)為半徑畫弧交AD的延長(zhǎng)線于點(diǎn)E;②以E為圓心,EC長(zhǎng)為半徑畫弧交DE的延長(zhǎng)線于點(diǎn)F;③分別以C,F為圓心,大于CF的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)N;④作射線EN,根據(jù)作圖,若∠ACB=72°,則∠FEN的度數(shù)為( 。

A. 54° B. 63° C. 72° D. 75°

查看答案和解析>>

同步練習(xí)冊(cè)答案