【題目】如圖1,平行四邊形ABCD中,以B為坐標原點建立如圖所示直角坐標系,ABAC,AB=3,AD=5,點P在邊AD上運動(點P不與A重合,但可以與D點重合),以P為圓心,PA為半徑的⊙P與對角線AC交于A,E兩點.

1 直接寫出點A的坐標(____,____)設(shè)APx,直接寫出P點坐標(_______,______)(用含x的代數(shù)式表示)

2)當⊙P與邊CD相切于點F時,求P點的坐標;

3)隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點的個數(shù)也在變化,直接寫出公共點的個數(shù)與相對應(yīng)的AP的取值之間的關(guān)系.

【答案】(1)(1A P+x )(2)點P坐標為()(3)見解析.

【解析】

1)過A作x軸垂線交點為G,∴可求得:;

2)連接PF,可證得△DPF∽△DAC,利用相似三角形對應(yīng)邊成比例可求得:AP=PF=,從而求得P點的坐標;

3)以、、5為分段點,分類討論.

1A, P+x ;

2)如圖,連接PF

∵⊙P與邊CD相切于點F

PFCD

∵四邊形ABCD是平行四邊形

ABCD,且ABAC

ACCD

PFAC

∴△DPF∽△DAC

AP=

∴點P坐標為(

3)當0APAP≤5時,⊙P與平行四邊形ABCD的邊有2個公共點;

AP=時,⊙P與平行四邊形ABCD的邊有3個公共點;

AP時,⊙P與平行四邊形ABCD的邊有4個公共點;

AP=時,⊙P與平行四邊形ABCD的邊有5個公共點;

時,⊙P與平行四邊形ABCD的邊有6個公共點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,EF分別是AB、BC邊上的點,且∠EDF=45°,將DAE繞點D逆時針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF;

(2)AE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年,67日為端午節(jié).在端午節(jié)前夕,三位同學到某超市調(diào)研一種進價為2元的粽子的銷售情況.請根據(jù)小麗提供的信息,解答小華和小明提出的問題.

小麗

每個定價3元,每天能賣出500個.若這種粽子的售價每上漲0.1元,其銷售量將減少10

小華

照你說,若要實現(xiàn)每天800元的銷售利潤,那該如何定價?別忘了,根據(jù)物價局規(guī)定,售價不能超過進價的

小明

若按照物價局規(guī)定的最高售價,每天的利潤會超過800元嗎?請判斷并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船c的求救信號.已知A、B兩船相距100(+3)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測點D,測得船C正好在觀測點D的南偏東75°方向上.

(1)分別求出A與C,A與D之間的距離AC和AD(如果運算結(jié)果有根號,請保留根號).

(2)已知距觀測點D處200海里范圍內(nèi)有暗礁.若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸暗礁危險?(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,的弦,于點,過點的切線交的延長線于點,連接并延長交的延長線于點.

1)求證:的切線;

2)若,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了適合不同人群的口味,某商店對蘋果味、草莓味、牛奶味的糖果混合組裝成甲、乙兩種袋裝進行銷售.甲種每袋裝有蘋果味、草莓味、牛奶味的糖果各10顆,乙種每袋裝有蘋果味糖果20顆,草莓味和牛奶味糖果各5.甲、乙兩種袋裝糖果每袋成本價分別是袋中各類糖果成本之和.已知每顆蘋果味的糖果成本價為0.4元,甲種袋裝糖果的售價為23.4元,利潤率為30%,乙種袋裝糖果每袋的利潤率為20%.若這兩種袋裝的銷售利潤率達到24%,則該公司銷售甲、乙兩種袋裝糖果的數(shù)量之比是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中對角線ACBD相交于點O,CEBD,垂足為點E,CE=5,且EO=2DE,則ED的長為( )

A.B.2C.1D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過兩點A(﹣30),B0,3),且其對稱軸為直線x=﹣1

1)求此拋物線的解析式.

2)若點Q是對稱軸上一動點,當OQ+BQ最小時,求點Q的坐標.

3)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求PAB面積的最大值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=2x2﹣4x﹣6.

(1)求這個二次函數(shù)圖象的頂點坐標及對稱軸;

(2)指出該圖象可以看作拋物線y=2x2通過怎樣平移得到?

(3)在給定的坐標系內(nèi)畫出該函數(shù)的圖象,并根據(jù)圖象回答:當x取多少時,yx增大而減小;當x取多少時,y<0.

查看答案和解析>>

同步練習冊答案