【題目】如圖,已知是的直徑,,是的弦,交于點(diǎn),過(guò)點(diǎn)作的切線交的延長(zhǎng)線于點(diǎn),連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn).
(1)求證:是的切線;
(2)若,,求線段的長(zhǎng).
【答案】(1)見(jiàn)解析(2)8
【解析】
(1)連接OC,根據(jù)平行線的性質(zhì)得到∠1=∠ACB,由圓周角定理得到∠1=∠ACB=90°,根據(jù)線段垂直平分線的性質(zhì)得到DB=DC,求得∠DBE=∠DCE,根據(jù)切線的性質(zhì)得到∠DBO=90°,求得OC⊥DC,于是得到結(jié)論;
(2)根據(jù)切線的性質(zhì)得出是等邊三角形,再根據(jù)等邊三角形的性質(zhì)即可解答.
(1)證明:連接
∵
∴
∵是的直徑
∴
∴,由垂徑定理得垂直平分.
∴
∴
又∵
∴,即
∵為的切線,是半徑
∴
∴,即,
∵是的半徑.
∴是的切線
(2)由(1)知是的切線
∴
在中,
∴
又∵
∴是等邊三角形
∴
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,、、、分別是、、、的中點(diǎn),要使四邊形是菱形,則四邊形只需要滿足的一個(gè)條件是( )
A.B.四邊形是菱形C.對(duì)角線D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的y與x的部分對(duì)應(yīng)值如表:
x | 1 | 0 | 2 | 3 | 4 |
y | 5 | 0 | 4 | 3 | 0 |
下列結(jié)論:①拋物線的開(kāi)口向上;②拋物線的對(duì)稱軸為直線x=2;③當(dāng)0<x<4時(shí),y>0;④拋物線與x軸的兩個(gè)交點(diǎn)間的距離是4;⑤若A(,2),B(,3)是拋物線上兩點(diǎn),則,其中正確的個(gè)數(shù)是 ( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn)并經(jīng)過(guò)B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)的坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式;
(2)該二次函數(shù)的對(duì)稱軸交x軸于C點(diǎn),連接BC,并延長(zhǎng)BC交拋物線于E點(diǎn),連接BD,DE,求△BDE的面積;
(3)拋物線上有一個(gè)動(dòng)點(diǎn)P,與A,D兩點(diǎn)構(gòu)成△ADP,是否存在2S△ADP=S△BCD?若存在請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,A(0,8)、B(6,0) .動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿y軸負(fù)半軸方向運(yùn)動(dòng),速度每秒2個(gè)單位長(zhǎng)度,動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),沿BA方向向A點(diǎn)運(yùn)動(dòng),速度每秒1個(gè)單位長(zhǎng)度.兩點(diǎn)同時(shí)出發(fā),Q點(diǎn)到達(dá)A點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)△APQ面積為12,求t的值.
(2)當(dāng)△APQ的外心(三角形的外心是三角形三邊垂直平分線的交點(diǎn))在△APQ的邊上時(shí),求t值.
(3)若Q點(diǎn)在直線AB上運(yùn)動(dòng),過(guò)Q點(diǎn)作QH⊥x軸,垂足為H,當(dāng)△QBH與△ABO的相似比為1:2時(shí),直接寫(xiě)出Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平行四邊形ABCD中,以B為坐標(biāo)原點(diǎn)建立如圖所示直角坐標(biāo)系,AB⊥AC,AB=3,AD=5,點(diǎn)P在邊AD上運(yùn)動(dòng)(點(diǎn)P不與A重合,但可以與D點(diǎn)重合),以P為圓心,PA為半徑的⊙P與對(duì)角線AC交于A,E兩點(diǎn).
(1) 直接寫(xiě)出點(diǎn)A的坐標(biāo)(____,____)設(shè)AP為x,直接寫(xiě)出P點(diǎn)坐標(biāo)(_______,______)(用含x的代數(shù)式表示)
(2)當(dāng)⊙P與邊CD相切于點(diǎn)F時(shí),求P點(diǎn)的坐標(biāo);
(3)隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點(diǎn)的個(gè)數(shù)也在變化,直接寫(xiě)出公共點(diǎn)的個(gè)數(shù)與相對(duì)應(yīng)的AP的取值之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)四位數(shù),記千位上和百位上的數(shù)字之和為,十位上和個(gè)位上的數(shù)字之和為,如果,那么稱這個(gè)四位數(shù)為“和平數(shù)”.例如:1423,,,因?yàn)?/span>,所以1423是“和平數(shù)”.
(1)直接寫(xiě)出:最小的“和平數(shù)”是_________________,最大的“和平數(shù)”是_______________;
(2)求個(gè)位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是12的倍數(shù)的所有“和平數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).△ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上,將△ABC繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△AB′C′
(1)在正方形網(wǎng)格中,畫(huà)出△AB′C′;
(2)分別畫(huà)出旋轉(zhuǎn)過(guò)程中,點(diǎn)B點(diǎn)C經(jīng)過(guò)的路徑;
(3)計(jì)算線段BC在變換到B′C′的過(guò)程中掃過(guò)區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在圓上,=,過(guò)點(diǎn)C作CE⊥AD延長(zhǎng)線于點(diǎn)E.
(1)求證:CE是⊙O的切線;
(2)若BC=3,AC=4,求CE和AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com