【題目】山地自行車(chē)越來(lái)越受到中學(xué)生的喜愛(ài),各種品牌相繼投放市場(chǎng),某車(chē)行經(jīng)營(yíng)的A型車(chē)去年銷(xiāo)售總額為5萬(wàn)元,今年每輛銷(xiāo)售價(jià)比去年降低400元,若賣(mài)出的數(shù)量相同,銷(xiāo)售總額將比去年減少20%.
(1)今年A型車(chē)每輛售價(jià)多少元?(列方程解答)
(2)該車(chē)行計(jì)劃今年新進(jìn)一批A型車(chē)和B型車(chē)共60輛,A型車(chē)的進(jìn)貨價(jià)為每輛1100元,銷(xiāo)售價(jià)與(1)相同;B型車(chē)的進(jìn)貨價(jià)為每輛1400元,銷(xiāo)售價(jià)為每輛2000元,且B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車(chē)獲利最多?

【答案】
(1)解:設(shè)今年A型車(chē)每輛售價(jià)x元,則去年售價(jià)每輛為(x+400)元,由題意,得

解得:x=1600,

經(jīng)檢驗(yàn),x=1600是元方程的根;

答:今年A型車(chē)每輛售價(jià)1600元


(2)解:設(shè)今年新進(jìn)A型車(chē)a輛,則B型車(chē)(60﹣a)輛,獲利y元,由題意,得

y=(1600﹣1100)a+(2000﹣1400)(60﹣a),

y=﹣100a+36000,

∵B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的兩倍,

∴60﹣a≤2a,

∴a≥20.

∵k=﹣100<0,

∴y隨a的增大而減小.

∴a=20時(shí),y最大=34000元.

∴B型車(chē)的數(shù)量為:60﹣20=40輛.

∴當(dāng)新進(jìn)A型車(chē)20輛,B型車(chē)40輛時(shí),這批車(chē)獲利最大


【解析】(1)設(shè)今年A型車(chē)每輛售價(jià)x元,則去年售價(jià)每輛為(x+400)元,由賣(mài)出的數(shù)量相同建立方程求出其解即可;(2)設(shè)今年新進(jìn)A型車(chē)a輛,則B型車(chē)(60﹣a)輛,獲利y元,由條件表示出y與a之間的關(guān)系式,由a的取值范圍就可以求出y的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B、C、D四個(gè)點(diǎn)均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為(
A.40°
B.45°
C.50°
D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)題意解答
(1)計(jì)算: +|2﹣ |;
(2)當(dāng)關(guān)于x的方程x2﹣2x+c=0有實(shí)數(shù)根時(shí),求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2﹣2x與x軸正半軸相交于點(diǎn)A,頂點(diǎn)為B.
(1)用含a的式子表示點(diǎn)B的坐標(biāo);
(2)經(jīng)過(guò)點(diǎn)C(0,﹣2)的直線AC與OB(O為原點(diǎn))相交于點(diǎn)D,與拋物線的對(duì)稱(chēng)軸相交于點(diǎn)E,△OCD≌△BED,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB與△ACD均為正三角形,且頂點(diǎn)B、D均在雙曲線y= (x>0)上,點(diǎn)A、C在x軸上,連接BC交AD于點(diǎn)P,則△OBP的面積=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+2x+3與x軸的交點(diǎn)為A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸的交點(diǎn)為C,連結(jié)BC.點(diǎn)M是拋物線上A,C之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥BC,分別交x軸、拋物線于D,N,過(guò)點(diǎn)M作EF⊥x軸,垂足為F,并交直線BC于點(diǎn)E,

(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)M恰好是EF的中點(diǎn),求BD的長(zhǎng).
(3)連接DE,記△DEM,△BDE的面積分別為S1 , S2 , 當(dāng)BD=1時(shí),則S2﹣S1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】東東想把一根70 cm長(zhǎng)的木棒放到一個(gè)長(zhǎng)、寬、高分別為30 cm,40 cm,50 cm的木箱中,他能放進(jìn)去嗎?答:______. (不能”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,CA=CB,D為AC上的一點(diǎn),AD=2CD,AE⊥AB交BD的延長(zhǎng)線于E,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在四邊形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C,A(1,﹣1),B(3,﹣1),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿著x軸正方向以每秒2個(gè)單位長(zhǎng)度的速度移動(dòng),過(guò)點(diǎn)P作PQ垂直于直線OA,垂足為點(diǎn)Q,設(shè)點(diǎn)P移動(dòng)的時(shí)間t秒(0<t<2),△OPQ與四邊形OABC重疊部分的面積為S.

(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線的解析式,并確定頂點(diǎn)M的坐標(biāo);
(2)用含t的代數(shù)式表示點(diǎn)P、點(diǎn)Q的坐標(biāo);
(3)求出S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案