分析 (1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,
(2)根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;
(3)根據(jù)平行四邊形的面積,可得BD的長,根據(jù)等腰直角三角形,可得E點坐標,根據(jù)待定系數(shù)法,可得PQ的解析式,根據(jù)解方程組,可得答案.
解答 解:(1)設(shè)直線BC的解析式為y=kx+m,將B(5,0),C(0,5)代入,得
$\left\{\begin{array}{l}{5k+m=0}\\{m=5}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-1}\\{m=5}\end{array}\right.$.
∴直線BC的解析式為y=-x+5.
將B(5,0),C(0,5)代入y=x2+bx+c,得
$\left\{\begin{array}{l}{25+5b+c=0}\\{c=5}\end{array}\right.$,解得
$\left\{\begin{array}{l}{b=-6}\\{c=5}\end{array}\right.$.
∴拋物線的解析式y(tǒng)=x2-6x+5;
(2)∵點M是拋物線在x軸下方圖象上的動點,
∴設(shè)M(m,m2-6m+5).
∵點N是直線BC上與點M橫坐標相同的點,
∴N(m,m+5).
∵當點M在拋物線在x軸下方時,N的縱坐標總大于M的縱坐標.
∴MN=-m+5-(m2-6m+5)=-m2+5m=-(m-$\frac{5}{2}$)2+$\frac{25}{4}$.
∴MN的最大值是$\frac{25}{4}$.
(3)如圖,
設(shè)平行四邊形CBPQ的邊BC上的高為BD,則BC⊥BD,可求BC=5$\sqrt{2}$,
由平行四邊形CBPQ的面積為30可得,BC×BD=30,從而BD=3$\sqrt{2}$.
設(shè)直線PQ交x軸于E點,
∵BC⊥BD,∠OBC=45°,
∴∠EBD=45°,△EBD為等腰直角三角形,BE=$\sqrt{2}$BD=6.
∵B(5,0),
∴E(-1,0).
設(shè)直線PQ的解析式為y=-x+s,將E點坐標代入函數(shù)解析式,得
0=-(-1)+s,
解得s=-1,
從而直線PQ的解析式為y=-x-1.
聯(lián)立直線與拋物線,得
$\left\{\begin{array}{l}{y=-x-1}\\{y={x}^{2}-6x+5}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=2}\\{y=-3}\end{array}\right.$,$\left\{\begin{array}{l}{x=3}\\{y=-4}\end{array}\right.$,
故點P的坐標為(2,-3),(3,-4).
點評 本題考察了二次函數(shù)綜合題,(2)利用平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標得出二次函數(shù)是解題關(guān)鍵;(3)利用等腰直角三角形得出E點坐標是解題關(guān)鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 一個平面截一個球,得到的截面一定是圓 | |
B. | 一個平面截一個正方體,得到的截面可以是五邊形 | |
C. | 棱柱的截面不可能是圓 | |
D. | 甲、乙兩圖中,只有乙才能折成正方體 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (4x-3y)(-3y-4x) | B. | (2x2-y2)(2x2+y2) | C. | (a+b)(-b+a) | D. | (-x+y)(x-y) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com