【題目】如圖,四邊形ABCD、DEFG都是正方形,連接AE、CG.

(1)求證AE=CG;

(2)觀察圖形,猜想AE與CG之間的位置關(guān)系并證明你的猜想.

【答案】(1)見(jiàn)解析;(2)AECG

【解析】

試題分析:可以把結(jié)論涉及的線段放到ADE和CDG中,考慮證明全等的條件,又有兩個(gè)正方形,AD=CD,DE=DG,它們的夾角都是ADG加上直角,故夾角相等,可以證明全等;再利用互余關(guān)系可以證明AECG.

(1)如圖,

AD=CD,DE=DG,ADC=GDE=90°,

∵∠CDG=90°+ADG=ADE,

∴△ADE≌△CDG(SAS).

AE=CG.

(2)如圖,設(shè)AE與CG交點(diǎn)為M,AD與CG交點(diǎn)為N.

∵△ADE≌△CDG,

∴∠DAE=DCG.

∵∠ANM=CND,

∴△AMN∽△CDN.

∴∠AMN=ADC=90°.

AECG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一期間,小明和父母一起開(kāi)車(chē)到距家的景點(diǎn)旅游,出發(fā)前,汽車(chē)油箱內(nèi)儲(chǔ)油,當(dāng)行駛時(shí),發(fā)現(xiàn)油箱余油量為(假設(shè)行駛過(guò)程中汽車(chē)的耗油量是均勻的).

1)這個(gè)變化過(guò)程中哪個(gè)是自變量?哪個(gè)是因變量?

2)求該車(chē)平均每千米的耗油量,并寫(xiě)出行駛路程與剩余油量的關(guān)系式;

3)當(dāng)時(shí),求剩余油量的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解:是正整數(shù),且),在的所有這種分解中,如果兩因數(shù)之差的絕對(duì)值最小,我們就稱(chēng)的最佳分解,產(chǎn)規(guī)定:,例如:12可以分解成,,因?yàn)?/span>,所以12的最佳分解,所以.

1)求

2)若正整數(shù)4的倍數(shù),我們稱(chēng)正整數(shù)四季數(shù),如果一個(gè)兩位正整數(shù),為自然數(shù)),交換個(gè)位上的數(shù)字與十位上的數(shù)字得到的新兩位正整數(shù)減去原來(lái)的兩位正整數(shù)所得的差為四季數(shù),那么我們稱(chēng)這個(gè)數(shù)有緣數(shù),求所有有緣數(shù)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面資料:

小明遇到這樣一個(gè)問(wèn)題:如圖1,對(duì)面積為a的△ABC逐次進(jìn)行以下操作:分別延長(zhǎng)ABBC、CAA1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.

小明是這樣思考和解決這個(gè)問(wèn)題的:如圖2,連接A1C、B1AC1B,因?yàn)?/span>A1B2ABB1C2BC,C1A2CA,根據(jù)等高兩三角形的面積比等于底之比,所以2SABC2a,由此繼續(xù)推理,從而解決了這個(gè)問(wèn)題.

1)直接寫(xiě)出S1 (用含字母a的式子表示).

請(qǐng)參考小明同學(xué)思考問(wèn)題的方法,解決下列問(wèn)題:

2)如圖3,P為△ABC內(nèi)一點(diǎn),連接APBP、CP并延長(zhǎng)分別交邊BC、AC、AB于點(diǎn)D、E、F,則把△ABC分成六個(gè)小三角形,其中四個(gè)小三角形面積已在圖上標(biāo)明,求△ABC的面積.

3)如圖4,若點(diǎn)P為△ABC的邊AB上的中線CF的中點(diǎn),求SAPESBPF的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在中,,,點(diǎn)的中點(diǎn).

(1)如圖1,、分別是上的點(diǎn),且,求證:為等腰直角三角形.

(2)如圖2,若、分別為,延長(zhǎng)線上的點(diǎn),仍有,其他條件不變,那么,是否仍為等腰直角三角形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上每相鄰兩點(diǎn)間的距離為一個(gè)單位長(zhǎng)度,點(diǎn)、、對(duì)應(yīng)的數(shù)分別是,且.

1)那么 ,

2)點(diǎn)個(gè)單位/秒的速度沿著數(shù)軸的正方向運(yùn)動(dòng),秒后點(diǎn)個(gè)單位/秒的速度也沿著數(shù)軸的正方向運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)處立刻返回,與點(diǎn)在數(shù)軸的某點(diǎn)處相遇,求這個(gè)點(diǎn)對(duì)應(yīng)的數(shù);

3)如果兩點(diǎn)以(2)中的速度同時(shí)向數(shù)軸的負(fù)方向運(yùn)動(dòng),點(diǎn)從圖上的位置出發(fā)也向數(shù)軸的負(fù)方向運(yùn)動(dòng),且始終保持,當(dāng)點(diǎn)運(yùn)動(dòng)到時(shí),點(diǎn)對(duì)應(yīng)的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(生活常識(shí))

射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等。如圖 1,MN 是平面鏡,若入射光線 AO 與水平鏡面夾角為∠1,反射光線 OB 與水平鏡面夾角為∠2,則∠1=2 .

(現(xiàn)象解釋?zhuān)?/span>

如圖 2,有兩塊平面鏡 OM,ON,且 OMON,入射光線 AB 經(jīng)過(guò)兩次反射,得到反射光線 CD.求證 ABCD.

(嘗試探究)

如圖 3,有兩塊平面鏡 OMON,且∠MON =55 ,入射光線 AB 經(jīng)過(guò)兩次反射,得到反射光線 CD,光線 AB CD 相交于點(diǎn) E,求∠BEC 的大小.

(深入思考)

如圖 4,有兩塊平面鏡 OM,ON,且∠MON α ,入射光線 AB 經(jīng)過(guò)兩次反射,得到反射光線 CD,光線 AB CD 所在的直線相交于點(diǎn) E,∠BED=β , α β 之間滿(mǎn)足的等量關(guān)系是 .(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩張寬度相等的紙條疊放在一起,重疊部分構(gòu)成四邊形ABCD

1)求證:四邊形ABCD是菱形;

2)若紙條寬3cm,∠ABC=60°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】浠水縣商場(chǎng)某柜臺(tái)銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷(xiāo)售情況:

銷(xiāo)售時(shí)段

銷(xiāo)售數(shù)量

銷(xiāo)售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

4臺(tái)

1200

第二周

5臺(tái)

6臺(tái)

1900

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入﹣進(jìn)貨成本)

(1)求A、B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);

(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

(3)在(2)的條件下,商場(chǎng)銷(xiāo)售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案