【題目】已知:在中,,,點(diǎn)為的中點(diǎn).
(1)如圖1,、分別是、上的點(diǎn),且,求證:為等腰直角三角形.
(2)如圖2,若、分別為,延長線上的點(diǎn),仍有,其他條件不變,那么,是否仍為等腰直角三角形?證明你的結(jié)論.
【答案】(1)見解析;(2)見解析.
【解析】
(1)先連接AD,構(gòu)造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底邊上的中線,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可證出:,從而得出DE=DF,∠BDE=∠ADF,從而得出∠EDF=90°,即△DEF是等腰直角三角形;
(2)還是證明:,主要證∠DAF=∠DBE(∠DBE=180°-45°=135°,∠DAF=90°+45°=135°),再結(jié)合兩組對邊對應(yīng)相等,所以兩個三角形全等.
(1)證明:連結(jié),如圖1所示,
∵,,為的中點(diǎn),
∴,,
∴,
又,
∴.
∴,,
∴.
∴為等腰直角三角形;
(2)若、分別是、延長線上的點(diǎn),連結(jié),如圖2所示,
∵,,為的中點(diǎn),
∴,,
∴,
∴.
又,
∴,
∴,,
∴.
∴仍為等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《山西省新能源汽車產(chǎn)業(yè)2018年行動計劃》指出,2018年全省新能源汽車產(chǎn)能將達(dá)到30萬輛,按照“十三五”規(guī)劃,到2020年,全省新能源汽車產(chǎn)能將達(dá)到41萬輛,若設(shè)這兩年全省新能源汽車產(chǎn)能的平均增長率為,則根據(jù)題意可列出方程是()
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,BC=12,E、F分別是AB、AC的中點(diǎn),動點(diǎn)P在射線EF上,BP交CE于D,∠CBP的平分線交CE于Q,當(dāng)CQ=CE時,EP+BP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個三角形,則S△ABO︰S△BCO︰S△CAO等于( )
A. 1︰1︰1
B. 1︰2︰3
C. 2︰3︰4
D. 3︰4︰5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD、DEFG都是正方形,連接AE、CG.
(1)求證:AE=CG;
(2)觀察圖形,猜想AE與CG之間的位置關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與相交于點(diǎn),對于平面內(nèi)任意一點(diǎn),點(diǎn)直線,的距離分別為,,則稱有序?qū)崝?shù)對是點(diǎn)的“距離坐標(biāo)”,根據(jù)上述定義,“距離坐標(biāo)”是的點(diǎn)的個數(shù)是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為直線與直線的交點(diǎn),點(diǎn)在線段上,.
(1)求點(diǎn)的坐標(biāo);
(2)若為線段上一動點(diǎn)(不與重合),的橫坐標(biāo)為,的面積為,請求出與的函數(shù)關(guān)系式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點(diǎn).已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點(diǎn)A(1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x-2)2+m的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com