【題目】如圖,⊙O的半徑為5cm,弦AB=cm,CD=cm,則弦AC、BD的夾角∠APB的度數(shù)為_____.
【答案】105°
【解析】
首先連接OA、OB、OC,根據(jù)已知條件可以得出為等腰直角三角形,從而得出∠ACB的度數(shù),再過C點做直徑CE,連接DE,進一步求出∠E的度數(shù),從而得∠PBC的度數(shù),故進一步得出∠APB的度數(shù).
解:連接OA、OB、BC,作直徑CE,連接DE,如圖,
∵OA=OB=5,AB= ,
∴OA2+OB2=AB2,
∴為等腰直角三角形,
∴∠AOB=90°,
∴∠ACB=∠AOB=45°,
∵CE為直徑,
∴∠CDE=90°,
∵ == = ,
∴∠E=60°,
∴∠PBC=∠E=60°,
∴∠APB=45°+60°=105°,
故答案為:105°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知二次函數(shù)圖象的頂點為A,與y軸交于點B,異于頂點A的點C(1,n)在該函數(shù)圖象上.
(1)當m=5時,求n的值.
(2)當n=2時,若點A在第一象限內(nèi),結(jié)合圖象,求當y時,自變量x的取值范圍.
(3)作直線AC與y軸相交于點D.當點B在x軸上方,且在線段OD上時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺AB型電子產(chǎn)品的總?cè)蝿眨阎颗_AB型產(chǎn)品由4個A型裝置和3個B型裝置配套組成.工廠現(xiàn)有80名工人,每個工人每天能加工6個A型裝置或3個B型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的A、B型裝置數(shù)量正好全部配套組成AB型產(chǎn)品.為了在規(guī)定期限內(nèi)完成總?cè)蝿,工廠決定補充一些新工人,這些新工人只能獨立進行A型裝置的加工,且每人每天只能加工4個A型裝置.
(1)設原來每天安排x名工人生產(chǎn)A型裝置,后來補充m名新工人,求x的值(用含m的代數(shù)式表示)
(2)請問至少需要補充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿眨?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E、F分別是ABCD的邊BC,AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=8,∠BAC=90°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一項工程,由甲、乙兩個工程隊共同完成,若乙工程隊單獨完成需要60天;若兩個工程隊合作18天后,甲工程隊再單獨做10天也恰好完成.
(1)甲工程隊單獨完成此項工程需要幾天?
(2)若甲工程隊每天施工費用為0.6萬元,乙工程隊每天施工費用為0.35萬元,要使該項目總施工費用不超過22萬元,則乙工程隊至少施工多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BC是⊙O的直徑,CE是⊙O的弦,過點E作⊙O的切線,交CB的延長線于點G,過點B作BF⊥GE于點F,交CE的延長線于點A.
(1)求證:∠ABG=2∠C;
(2)若GF=3,GB=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將放在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均落在格點上.
Ⅰ的面積等于______;
Ⅱ若四邊形DEFG是中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法不要求證明________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在中,,,點分別是的中點,過點作直線的垂線段垂足為.點是直線上一動點,作使,連接.
(1)觀察猜想:如圖(2),當點與點重合時,則的值為 .
(2)問題探究:如圖(1),當點與點不重合時,請求出的值及兩直線夾角銳角的度數(shù),并說明理由
(3)問題解決:如圖(3),當點在同一直線上時,請直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com