【題目】如圖(1),在中,,,點分別是的中點,過點作直線的垂線段垂足為.點是直線上一動點,作使,連接

1)觀察猜想:如圖(2),當點與點重合時,則的值為

2)問題探究:如圖(1),當點與點不重合時,請求出的值及兩直線夾角銳角的度數(shù),并說明理由

3)問題解決:如圖(3),當點在同一直線上時,請直接寫出的值.

【答案】12;(260°,見解析;(34+4

【解析】

1)由題意可知結論為當點F與點D重合時,則的值為2,并根據(jù)題意設BM=a,求出DM,GD即可解決問題;

2)由題意可知結論為的值為2,兩直線GD、ED夾角銳角的度數(shù)為60°,并利用全等三角形的判定定理證明△BGD∽△BFM,可得結論;

3)根據(jù)題意分兩種情形:當點G在線段AF上時以及當點G在線段AF的延長線上時,分別進行求解即可.

解:(1 BM=a

AE=EC,AD=DB,

DEBC,

∴∠BDM=ABC=30°,

BMEM

∴∠BMD=90°,

,

Rt△GDB中,∵∠GDB=90°,∠G=30°,

,

故答案為:2.

2)在Rt△BDM中,設BM=a,則BD=2a,DM=a

Rt△BGF中,設BF=b,則BG=2b,FG=

△BGD△BFM中,

∵BGBF=2bb=2aa=BFBM,∠DBG=60°∠FBD=∠FBM

∴△BGD∽△BFM

DGFM=BDBM=2aa=21

的值為2.

如圖,延長GDBF交于點P,

∵△BGD∽△BFM

∴∠PFD=∠MFB=∠BGD

則在△PDF△PBG中,∠PDF=∠PBG=60°.

的值為2,兩直線GD、ED夾角銳角的度數(shù)為60°.

3)如圖,有以下兩種如圖3①,圖3②

如圖3③,ED△ABC的中垂線;

Rt△AF1BRt△AF2B中,DA=DF1=DF2=DB

四邊形AF2BF1是矩形

當點G在線段AF上時,在Rt△BF1G1中,

BF1=x,則BG1=2x=AG1,F1G1=

∴BG1AF1==4

當點G在線段AF的延長線上時,在矩形AF2BF1中,

AF2=BF1=x, F2B=AF1=

∴BG2=2

BG2AF2=2x=4+.

的值為4+4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的半徑為5cm,弦ABcmCDcm,則弦AC、BD的夾角∠APB的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,如圖1,ABO的弦,點F的中點,過點FEFAB于點E,易得點EAB的中點,即AEEBO上一點CACBC),則折線ACB稱為O的一條“折弦”.

1)當點C在弦AB的上方時(如圖2),過點FEFAC于點E,求證:點E是“折弦ACB”的中點,即AEEC+CB

2)當點C在弦AB的下方時(如圖3),其他條件不變,則上述結論是否仍然成立?若成立說明理由;若不成立,那么AE、EC、CB滿足怎樣的數(shù)量關系?直接寫出,不必證明.

3)如圖4,已知RtABC中,∠C90°,∠BAC30°,RtABC的外接圓O的半徑為2,過O上一點PPHAC于點H,交AB于點M,當∠PAB45°時,求AH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小東設計的過直線外一點作這條直線的平行線的尺規(guī)作圖過程.

已知:直線l及直線l外一點P

求作:直線,使得

作法:如圖,

①任意取一點K,使點K和點P在直線l的兩旁;

②以P為圓心,長為半徑畫弧,交l于點,連接;

③分別以點為圓心,以長為半徑畫弧,兩弧相交于點Q(點Q和點A在直線的兩旁);

④作直線

所以直線就是所求作的直線.

根據(jù)小東設計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:連接,

______,______

四邊形是平行四邊形(__________)(填推理依據(jù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年全國兩會于35日在人民大會堂開幕,某社區(qū)為了解居民對此次兩會的關注程度,在全社區(qū)范圍內(nèi)隨機抽取部分居民進行問卷調(diào)查,根據(jù)調(diào)查結果,把居民對兩會的關注程度分成淡薄一般、較強很強四個層次,并繪制成如下不完整的統(tǒng)計圖:

請結合圖表中的信息,解答下列問題:

(1)此次調(diào)查一共隨機抽取了_____名居民;

(2)請將條形統(tǒng)計圖補充完整;

(3)扇形統(tǒng)計圖中,很強所對應扇形圓心角的度數(shù)為_____

(4)若該社區(qū)有1500人,則可以估計該社區(qū)居民對兩會的關注程度為淡薄層次的約有 _____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于點C,連接AD,OC.若△ABO的周長為,AD=2,則△ACO的面積為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(A在點B左側(cè)),根據(jù)對稱性AMB恒為等腰三角形,我們規(guī)定:當AMB為直角三角形時,就稱AMB為該拋物線的“完美三角形”.如圖2,則拋物線yx的“完美三角形”斜邊AB的長________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】延遲開學期間,學校為了全面分析學生的網(wǎng)課學習情況,進行了一次抽樣調(diào)查(把學習情況分為三個層次,:能主動完成老師布置的作業(yè)并合理安排課外時間自主學習;:只完成老師布置的作業(yè);:不能完成老師布置的作業(yè)),并將調(diào)查結果繪制成圖1和圖2的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了__________名學生;

2)將條形圖補充完整;

3)圖2所占的圓心角的度數(shù)為__________度;

4)如果學校開學后對層次的學生進行獎勵,根據(jù)抽樣調(diào)查結果,請你估計該校1600名學生中大約有多少名學生能獲得獎勵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,∠DCA30°,點F是對角線AC上的一個動點,連接DF,以DF為斜邊作∠DFE30°的直角三角形DEF,使點E和點A位于DF兩側(cè),點F從點A到點C的運動過程中,點E的運動路徑長是________

查看答案和解析>>

同步練習冊答案