5.現(xiàn)定義一種運算“⊙”,對任意有理數(shù)m、n,規(guī)定:m⊙n=mn(m-n),如1⊙2=1×2(1-2)=-2,則(a+b)⊙(a-b)的值是( 。
A.2ab2-2b2B.2a2b-2b3C.2ab2+2b2D.2ab-2ab2

分析 根據(jù)題目中的新運算可以求得(a+b)⊙(a-b)的值,本題得以解決.

解答 解:∵m⊙n=mn(m-n),
∴(a+b)⊙(a-b)
=(a+b)(a-b)[(a+b)-(a-b)]
=(a2-b2)×2b
=2a2b-2b3,
故選B.

點評 本題考查整式的混合運算、有理數(shù)的混合運算,解題的關(guān)鍵是明確它們的計算方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,D是AC上一點,AB=DA,DE∥AB,∠B=∠DAE.求證:∠C=∠ADE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,P是⊙O的直線AB的延長線上的一點,PC與⊙O相切于點C,∠APC的角平分線交AC于點Q,則∠PQC=45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.-2的相反數(shù)是( 。
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.探究:換元法是重要的數(shù)學(xué)思想方法,用換元法可解決許多數(shù)學(xué)問題,請看例題:
解方程:x4-2x2-3=0.
解:設(shè)x2=y,則原方程化為y2-2y-3=0.
解關(guān)于y的一元二次方程,得y1=-1,y2=3.
當(dāng)y=-1時,即x2=-1,此時方程無實數(shù)根;
當(dāng)y=3時,即x2=3解得x1=$\sqrt{3}$,x2=-$\sqrt{3}$.
所以原方程的根是x1=$\sqrt{3}$,x2=-$\sqrt{3}$.
請你用換元法解下列方程:
(1)$\frac{1}{{x}^{2}}$-$\frac{5}{x}$+6=0;
(2)(x2-2)-2(x2-2)-8=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.已知一次函數(shù)y=kx+b(k≠0,k,b為常數(shù)),x與y的部分對應(yīng)值如表,則m等于(  )
x-101
y1m-1
A.-1B.0C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,正方形ABCD的邊長為10,E是邊DC上一點,F(xiàn)是邊BC上一點,且DE=CF.問:當(dāng)點E在什么位置時,△AEF的面積最?最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.有這樣一對數(shù):一個數(shù)的數(shù)字排列完全顛倒過來就變成另一個數(shù),簡單地說就是順序相反的兩個數(shù),我們把這樣的一對數(shù)互稱為反序數(shù).比如:123的反序數(shù)是321,4056的反序數(shù)是6504.根據(jù)以上閱讀材料,回答下列問題:
(1)已知一個三位數(shù),其數(shù)位上的數(shù)字為連續(xù)的三個自然數(shù),求證:原三位數(shù)與其反序數(shù)之差的絕對值等于198;
(2)若一個兩位數(shù)與其反序數(shù)之和是一個完全平方數(shù),求滿足上述條件的所有兩位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知:如圖,AD∥BC,DB平分∠ADC,CE平分∠BCD,交AB于點E,BD于點O.
求證:點O到EB與ED的距離相等.

查看答案和解析>>

同步練習(xí)冊答案