分析 首先連接BC交PQ于E,由PC與圓D相切于點(diǎn)C,根據(jù)弦切角定理,即可得∠PCB=∠A,又由AB為直徑,即可得∠ACB=90°,然后由PQ平分∠APC與三角形外角的性質(zhì)(∠CQP=∠A+∠APQ,∠CEQ=∠PCB+∠QPC),即可證得∠CQP=CEQ,則可求得∠PQC的度數(shù).
解答 解:解:連接BC交PQ于E,
∵PC與圓D相切于點(diǎn)C,
∴∠PCB=∠A,
∵AB為直徑,
∴∠ACB=90°,
∵PQ平分∠APC,
∴∠APQ=∠QPC,
∵∠CQP=∠A+∠APQ,∠CEQ=∠PCB+∠QPC,
∴∠CQP=∠CEQ=$\frac{180°-90°}{2}$=45°.
故答案為45
點(diǎn)評 此題考查了圓的切線的性質(zhì),圓周角的性質(zhì),弦切角定理,等腰直角三角形的性質(zhì),以及三角形外角的性質(zhì)等知識.此題綜合性較強(qiáng),難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 南偏東50° | B. | 南偏東50°且距貨輪20 km處 | ||
C. | 距燈塔20 km處 | D. | 北偏西50°且距貨輪20 km處 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2ab2-2b2 | B. | 2a2b-2b3 | C. | 2ab2+2b2 | D. | 2ab-2ab2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com