【題目】如圖,已知Rt△ABC中,∠ACB=90°,∠BAC=30°,延長BC至D使CD=BC,連接AD,且AD=4,點P為線段AC上一動點,連接BP.則2BP+AP的最小值為__________.
【答案】
【解析】
先證明△ABD是等邊三角形可得∠PAF=30°,作PF⊥AD于F,BF′⊥AD于F′,交AC于P′.由∠PAF=30°,∠PFA=90°,推出PF=PA,推出2BP+AP=2(PB+PA)=2(PB+PF),所以當(dāng)B、P、F共線時,即BF′⊥AD時,PB+PF最短,最小值為線段BF′,求出BF′即可解決問題.
∵∠ACB=90°,∠BAC=30°
∴AC⊥BD,∠B=60°
∵DC=CB,
∴AD=AB,∵∠B=60°,
∴△ABD是等邊三角形,
∴∠PAF=30°,
作PF⊥AD于F,EF′⊥AD于F′,交AC于P′.
∵∠PAF=30°,∠PFA=90°,
∴PF=PA,
∴2BP+AP=2(PB+PA)=2(PB+PF),
∴當(dāng)B、P、F共線時,即BF′⊥AD時,PB+PF最短,最小值為線段BF′,
在Rt△DF′B中,∵∠D=60°,DB=4,
∴∠DBF′=30°
∴DF′=2,
∴BF′=
∴2BP+AP的最小值為4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點C為線段AB上一點,△ACM、△BCN是等邊三角形.
(1)如圖1,求證:AN=BM;
(2)如圖2,將△ACM繞點C按逆時針方向旋轉(zhuǎn)180°,使點A落在CB上,結(jié)論“AN=BM”是否還成立,若成立,請證明:若不成立,請說明理由;
(3)在(2)所得的圖形中,設(shè)MA的延長線交BN于D(如圖3),試判斷△ABD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠ACB=90°,CB=6,AC=8,點D是AC上的一點,點E是BD上一點.
(1)如圖(1),若點D在AB的垂直平分線上,求CD的長.
(2)如圖(2),連接AE,若AE平分∠BAC,BE平分∠ABC,求點E到AC的距離.
(3)若點E到三角形兩邊的距離為1.5,求CD的長.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點E在AD上,請僅用無刻度直尺按要求作圖(保留作圖痕跡,不寫作法)
(1)在圖1中,過點E作直線EF將□ABCD分成兩個全等的圖形;
(2)在圖2中,DE=DC,請你作出∠BAD的平分線AM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:CD是經(jīng)過∠BCA頂點C的一條直線,CA=CB.E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F在射線CD上,如圖1,若∠BCA=90°,∠α=90°,則BE______CF;并說明理由.
(2)如圖2,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢鲫P(guān)于EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想:__________.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠DCE的角平分線CG的反向延長線和∠ABE的角平分線BF交于點F,∠E﹣∠F=33°,則∠E=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】沿海某城市A的正南方200千米B處有一臺風(fēng)中心,其中心最大風(fēng)力為12級,每遠離臺風(fēng)中心20千米,風(fēng)力就會減弱一級,該臺風(fēng)中心現(xiàn)在15千米/時的速度沿北偏東30°方向往C移動且臺風(fēng)中心風(fēng)力不變,若城市所受風(fēng)力達到或超過5級,則稱為受臺風(fēng)影響.
(1)該城市是否受到此次臺風(fēng)影響?請說明理由;
(2)若會受到臺風(fēng)影響,那么臺風(fēng)影響該城市持續(xù)時間有多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖8,AB兩地之間有一座山,以前從A地到B地需要經(jīng)過C地.現(xiàn)在政府出資打通了一條山嶺隧道,使從A地到B地可沿直線AB直接到達.已知BC=8km,∠A=45°,∠B=53°.
(1)求點C到直線AB的距離;
(2)求現(xiàn)在從A地到B地可比原來少走多少路程?(結(jié)果精確到0.1km;參考數(shù)據(jù):≈1.41,sin53°≈0.80,cos53°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)為.
(1)如圖1,若點B 在x軸正半軸上,點,,,求點B坐標(biāo);
(2)如圖2,若點B 在x軸負(fù)半軸上,軸于點E,軸于點F,,MF交直線AE于點M,若點,BM=5,求點M坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com