5.一苗木基地出售的百合和玫瑰,其單價(jià)為:玫瑰4元/株,百合5元/株,如果所購(gòu)的玫瑰數(shù)量大于1200株,那么每株玫瑰還可降價(jià)1元.
(1)一鮮花店采購(gòu)百合和玫瑰一共1000株,共花去4400元,那么該鮮花店采購(gòu)百合和玫瑰各幾株?
(2)一鮮花店采購(gòu)玫瑰1000株~1500株,百合若干株,恰好花去了9000元.
①設(shè)采購(gòu)玫瑰x株,當(dāng)所購(gòu)的玫瑰數(shù)量小于1200株時(shí),則購(gòu)百合$\frac{9000-4x}{5}$株; 當(dāng)所購(gòu)的玫瑰數(shù)量大于1200株時(shí),則購(gòu)百合$\frac{9000-3x}{5}$株(用x的代數(shù)式表示);
②如果該花店以玫瑰5元、百合6.5元的價(jià)格賣(mài)出,問(wèn):此鮮花店應(yīng)如何采購(gòu)這兩種鮮花才能使獲得的毛利潤(rùn)最大?
(注:1000株~1500株,表示大于或等于1000株,且小于或等于1500株;
毛利潤(rùn)=鮮花店賣(mài)出百合和玫瑰所獲的總金額-購(gòu)進(jìn)百合和玫瑰的所需的總金額)

分析 (1)根據(jù)相等關(guān)系:玫瑰數(shù)+百合數(shù)=1000、采購(gòu)玫瑰總費(fèi)用+采購(gòu)百合總費(fèi)用=4400,列方程組求解;
(2)①采購(gòu)百合數(shù)量=(總費(fèi)用-采購(gòu)玫瑰的費(fèi)用)÷百合的單價(jià),分情況可列出代數(shù)式;
②根據(jù)玫瑰的數(shù)量分1000≤x≤1200、1200<x≤1500兩種情況,用“毛利潤(rùn)=賣(mài)出百合和玫瑰獲的總金額-購(gòu)進(jìn)百合和玫瑰所需的總金額”列函數(shù)關(guān)系式,可得最大利潤(rùn).

解答 解:(1)設(shè)采購(gòu)玫瑰x株,百合y株,
則有$\left\{{\begin{array}{l}{x+y=1000}\\{4x+5y=4400}\end{array}}\right.$,
解得$\left\{{\begin{array}{l}{x=600}\\{y=400}\end{array}}\right.$.
所以,采購(gòu)玫瑰600株,百合400株;   
(2)①當(dāng)所購(gòu)的玫瑰數(shù)量小于1200株時(shí),玫瑰的單價(jià)為4元/株,則百合的數(shù)量為:$\frac{9000-4x}{5}$,
當(dāng)所購(gòu)的玫瑰數(shù)量大于1200株時(shí),玫瑰的單價(jià)為3元/株,則百合的數(shù)量為:$\frac{9000-3x}{5}$;
②設(shè)采購(gòu)玫瑰x株,記獲得的毛利潤(rùn)為W,
當(dāng)1000≤x≤1200時(shí),則百合有$\frac{9000-4x}{5}$株,
W=(5-4)x+(6.5-5)×$\frac{9000-4x}{5}$=-$\frac{x}{5}$+2700,
∵k<0,w隨x的增大而減小,
∴當(dāng)x=1000時(shí),W有最大值,最大值為2500;
當(dāng)1200<x≤1500時(shí),則百合有$\frac{9000-3x}{5}$株,
W=(5-3)x+(6.5-5)×$\frac{9000-3x}{5}$=$\frac{11x}{10}$+2700,
∵k>0,w隨x的增大而增大,
∴當(dāng)x=1500時(shí),W有最大值4350.
此時(shí)百合有$\frac{9000-3x}{5}$=900(株).
答:采購(gòu)玫瑰1500株,百合900株,毛利潤(rùn)最大為4350元.
故答案為:(2)①$\frac{9000-4x}{5}$,$\frac{9000-3x}{5}$.

點(diǎn)評(píng) 本題考查了一次函數(shù)和二元一次方程組的應(yīng)用,為方程與實(shí)際結(jié)合的綜合類(lèi)應(yīng)用題,分類(lèi)討論是解決問(wèn)題的基本思想,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.按如下方式排列正整數(shù),第1行有1個(gè)數(shù),第2行有3個(gè)數(shù),第3,4行分別有7個(gè)、13個(gè)數(shù).依此規(guī)律.解答下列問(wèn)題:
1
2 3 4
3 4 5 6 7 8 9
4 5 6 7 8 9 10…15 16

(1)第10行有91個(gè)數(shù),第n行有n2-n+1個(gè)數(shù)(結(jié)果用含n的式子表示)
(2)第2,3,4行都含有數(shù)4,其中第2行最先出現(xiàn)4.那么2015最先出現(xiàn)在第幾行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若1-x有平方根,且滿足|3x-4|=5,求6x+3的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.(x-1)(x+2)=3(x+2)的根是( 。
A.1,-2B.4,-2C.0,-2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.點(diǎn)A(-2,$\sqrt{2}$-1)在平面直角坐標(biāo)系中的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.福安市電力公司為鼓勵(lì)居民節(jié)約用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi),每月用電不超過(guò)50度時(shí),按每度0.5元計(jì)費(fèi);每月用電超過(guò)50度時(shí),超過(guò)部分按每度0.7元計(jì)費(fèi).
 檔次 標(biāo)準(zhǔn) 電價(jià)
 第一檔 0至50度(包括50度) 0.5元/度
 第二檔超過(guò)50度的 0.7元/度
(1)小敏家5月份用電50度,5月份的電費(fèi)為25元.小敏家6月份用電70度,6月份的電費(fèi)為39元.
(2)設(shè)月用電x度時(shí),當(dāng)x≤50時(shí),月電費(fèi)y=0.5x,當(dāng)x>50時(shí)y=0.7x-10;
(3)6月份,小明家電費(fèi)為60元,小明家6月份用了多少度電?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,△ABC是等邊三角形,D是AC邊上一動(dòng)點(diǎn)(D不與A、C重合),E為BC邊的延長(zhǎng)線上一動(dòng)點(diǎn),且在運(yùn)動(dòng)過(guò)程中始終保持CE=AD,連接DE.
(1)如圖(1),當(dāng)點(diǎn)D為BC邊的中點(diǎn)時(shí),試判斷△BDE的形狀,并證明你的結(jié)論;
(2)如圖(2),當(dāng)點(diǎn)D為BC邊上任一位置時(shí),(1)中的結(jié)論是否成立,請(qǐng)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.P為等邊△ABC的邊AB上一點(diǎn),Q為BC延長(zhǎng)線上一點(diǎn),且PA=CQ,連PQ交AC邊于D.
(1)證明:PD=DQ.
(2)如圖2,過(guò)P作PE⊥AC于E,若AB=6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.觀察下列圖案,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案