【題目】閱讀下面材料: 如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).
觀察圖象可知:
①當(dāng)x=﹣3或1時(shí),y1=y2;
②當(dāng)﹣3<x<0或x>1時(shí),y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個(gè)問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識(shí)的經(jīng)驗(yàn),對(duì)求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.
下面是他的探究過程,請(qǐng)將(1)、(2)、(3)補(bǔ)充完整:
將不等式按條件進(jìn)行轉(zhuǎn)化:
當(dāng)x=0時(shí),原不等式不成立;
當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1> ;
當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1< ;
(1)構(gòu)造函數(shù),畫出圖象 設(shè)y3=x2+4x﹣1,y4= ,在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象.
雙曲線y4= 如圖2所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(2)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo) 觀察所畫兩個(gè)函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗(yàn)證可知:滿足y3=y4的所有x的值為;
(3)借助圖象,寫出解集 結(jié)合討論結(jié)果,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點(diǎn)B的坐標(biāo)為(m,﹣2).
(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從教室B到圖書館A,總有少數(shù)同學(xué)不走人行橫道而橫穿草坪,他們這種做法是因?yàn)?/span>________,學(xué)校為制止這種現(xiàn)象,準(zhǔn)備立一塊警示牌,請(qǐng)你為該牌寫一句話________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形,第一個(gè)圖2條直線相交最多有1個(gè)交點(diǎn),第二個(gè)圖3條直線相交最多有3個(gè)交點(diǎn),第三個(gè)圖4條直線相交最多有6個(gè)交點(diǎn),…,像這樣,則20條直線相交最多交點(diǎn)的個(gè)數(shù)是( 。
A. 171 B. 190 C. 210 D. 380
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,則下列敘述不正確的是( 。
A. 點(diǎn)O不在直線AC上
B. 射線AB與射線BC是指同一條射線
C. 圖中共有5條線段
D. 直線AB與直線CA是指同一條直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB、AC是同一條直線上的兩條線段,M在AB上,且AM=AB,N在AC上,且AN=AC,線段BC和MN的大小有什么關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)求證:AC=AE;
(2)若點(diǎn)E為AB的中點(diǎn),CD=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三個(gè)互不相等的有理數(shù),既可分別表示為1、a+b、a的形式,又可分別表示為0、、b的形式,則a2018+b2017=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠α和∠β互補(bǔ),且∠α<∠β,下列表達(dá)式:①90°﹣∠α;②∠β﹣90°;③(∠β+∠α);④(∠β﹣∠α)中,等于∠α的余角的式子有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com