【題目】某建設(shè)工地一個工程有大量的沙石需要運輸.建設(shè)公司車隊有載重量為8噸和10噸的卡車共14輛,全部車輛一次能運輸128噸沙石.
(1)求建設(shè)公司車隊載重量為8噸和10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,車隊需要一次運輸沙石超過190噸,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共7輛,車隊最多新購買載重量為8噸的卡車多少輛?
【答案】(1)6輛, 8輛;(2)3輛.
【解析】
(1)根據(jù)車隊有載重量為8噸、10噸的卡車共14輛,全部車輛運輸一次能運輸128噸沙石,分別得出等式組成方程組,求出即可;
(2)利用車隊需要一次運輸沙石190噸以上,得出不等式求出結(jié)論即可.
(1)設(shè)該車隊載重量為8噸、10噸的卡車分別有x輛、y輛,
根據(jù)題意得:,
解之得:,
答:該車隊載重量為8噸的卡車有6輛,10噸的卡車有8輛;
(2)設(shè)載重量為8噸的卡車增加了z輛,
依題意得:8(6+z)+10(8+7﹣z)>190,
解之得:z<4,
∵z>0且為整數(shù),
∴z的最大值為3,
答:車隊最多新購買載重量為8噸的卡車3輛.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】核潛艇作為“三位一體”核打擊力量中的一種,對于一個國家來說,是水下核威懾的重要戰(zhàn)略武器.我國的核潛艇發(fā)展迅速,多次出色完成了戰(zhàn)略巡航任務(wù).一次,某型號核潛艇在水下400米的處以600米/分鐘的速度向正東方向航行時,發(fā)現(xiàn)斜上方仰角為水面上處有一可疑船只正沿著相同航向航行,跟蹤2分鐘后到達(dá)處,再次測得可疑船只在仰角為的處,請根據(jù)以上條件求出可疑船只航行的速度.(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸負(fù)半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點E.
(1)求拋物線的解析式;
(2)若拋物線與x軸正半軸交于點F,設(shè)點D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標(biāo);如果不存在,請說明理由.
(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,直線y=kx+b交BC于點E(1,m),交AB于點F(4,),反比例函數(shù)y=(x>0)的圖象經(jīng)過點E,F(xiàn).
(1)求反比例函數(shù)及一次函數(shù)解析式;
(2)點P是線段EF上一點,連接PO、PA,若△POA的面積等于△EBF的面積,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是矩形ABCD的邊CD上一點,把△ADE沿AE對折,使點D恰好落在BC邊上的F點處.已知折痕AE=10,且CE:CF=4:3,那么該矩形的周長為( )
A.48B.64C.92D.96
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠CAB=∠ABD=50°,P為AB中點,點M為射線AC上(不與點A重合)的任意一點,連接MP,并使MP的延長線交射線BD于點N,設(shè)∠BPN=α.連接MB,NA.
(1)求證:四邊形MBNA為平行四邊形;
(2)當(dāng)α=____°時,四邊形MBNA為矩形;
(3)當(dāng)α=_____°時,四邊形MBNA為菱形;
(4)四邊形MBNA可能是正方形嗎?_____(回答“可能”或“不可能”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月份,十八中九年級學(xué)生參加了中考體育模擬考試,為了了解該校九年級(1)班同學(xué)的中考體育情況,對全班學(xué)生的中考體育成績進(jìn)行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表和扇形統(tǒng)計圖,根據(jù)圖表中的信息解答下列問題:
分組 | 分?jǐn)?shù)段(分)) | 頻數(shù) |
A | 26≤x<31 | 2 |
B | 31≤x<36 | 5 |
C | 36≤x<41 | 15 |
D | 41≤x<46 | m |
E | 46≤x<51 | 10 |
(1)求全班學(xué)生人數(shù)和m的值.
(2)求扇形統(tǒng)計圖中的E對應(yīng)的扇形圓心角的度數(shù);
(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級進(jìn)行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com